Spelling suggestions: "subject:"northern latitude"" "subject:"orthern latitude""
1 |
Initial nutrient retention capacity in a constructed wetland : Evaluating the effectiveness of a newly constructed wetland to reduce eutrophication symptoms in a Baltic Sea bay in northern SwedenEriksson, Elin January 2021 (has links)
Since the turn of the last century, a substantial increase in nutrient load to the Baltic Sea is apparent. Adding the ongoing environmental change with raising temperatures and increased precipitation, this will continue to have a prominent environmental impact on our coastal ecosystems, especially in northern latitudes. Constructed wetlands are becoming more important as a mitigation measure to retain nutrients, however, they are until this day not well studied in northern latitudes. In this paper, nutrient retention in a newly constructed wetland is studied during its first month after activation, as well as potential downstream effects in associated sea bay. An additional literature study compiles information about the current knowledge, use and functionality of wetlands surrounding the Baltic Sea. This is done to widen knowledge regarding effectiveness of wetlands as nutrient traps in general, as well as to compare with the studied wetland. A net retention of 30 % for dissolved organic carbon (DOC) and total phosphorus (TP) was found, as well as 27 % for total nitrogen (TN), 25 % for phosphate (PO43-) and 21 % for nitrate (NO3-). TP was found to be within range of expected retention capacity, when comparing with wetlands included in the synthesis. TN retention, however, seemed to be somewhat greater than in other wetland studies. Furthermore, the retention varied and seemed to be highest during an increased discharge, in the beginning and end of March. This was partly reflected by greater inlet concentrations and transports in most of the parameters during the initial time period. Decreasing temporal trends was seen in concentrations of DOC, total nutrients and NO3- concentrations in the sea bay, indicating an immediate downstream effect of the wetland installation. Findings from the synthesis indicate that there are very few studies in, and thus little knowledge about, wetlands in northern climate. Overall, the results from the pioneer northern wetland in Sörleviken suggest that net retention is possible during its first month post-activation.
|
2 |
Geological factors affecting the channel type of Bjur River in Västerbotten County : A study concerning the connection between surficial geology, landforms, slope and different hydrological process domains in a stream catchment above the highest shorelineSkog, Emma January 2019 (has links)
Process domains categorizes sections of streams according to its local dominant processes. These processes often reflect on the local ecology and the streams appearance. But the underlying reason why these different process domains are formed are still not completely certain. In this study the distribution of the process domains: lakes, rapids and slow-flowing reaches in the Bjur River catchment were compared to the geological factors of slope, surficial geology and landforms to see if any connections could be found. The possibility of using GIS (geographic information systems) and remote data to distinguish these stream types and to connect them to the different studied geological factors were also examined. The hypothesis for this study is that the geological factors of slope, surficial geology and landforms all should have an influence over the distribution of the process domains in Bjur River. The analysis was executed through map-studies in ArcGIS and statistical analysis in Excel. All process domains showed statistical significance towards the studied geological factors. The slope was generally steeper in the rapids than in slow-flowing reaches and lakes. The surficial geology displayed more fine-grained sediment (peat) in proximity to lakes and slow-flowing reaches whilst till was more abundant close to rapids. Hilly moraine landscapes were most common around lakes, while rapids displayed a high percentage of glacio-fluvially eroded area. Slow-flowing reaches also showed to have around 44% of its studied points around glacio-fluvially eroded area, and 43% at areas without any major landforms. Even if the statistical analysis and figures display a difference between the different process domains, it is still difficult to say which of these geological factors that plays the most crucial role for their development. However, by using remote data and through studies over slope, adjacent surficial geology and landforms the different process domains can be differentiated from one another.
|
Page generated in 0.0974 seconds