• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 18
  • 11
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Heterocysts of Nostoc punctiforme : From Proteomics to Energy Transfer

Cardona, Tanai January 2009 (has links)
The aim of this thesis is to provide a thorough characterization of the photosynthetic machinery from the heterocysts of Nostoc punctiforme strain ATCC 29133. In this thesis I describe the protocols I have optimized for the isolation of thylakoids from vegetative cells, the purification of heterocysts and the isolation of thylakoids from the purified heterocysts. The composition of the thylakoid membranes was studied by two dimensional electrophoresis and mass-spectrometry. Further insight into the functionality of the photosynthetic complexes was obtained by EPR, electron transport measurements through Photosystem II (PSII), and fluorescence spectroscopy. The proteome of the heterocysts thylakoids compared to that of the vegetative cell was found to be dominated by Photosystem I (PSI) and ATP-synthase complexes, both essential for keeping high nitrogenase activities. Surprisingly, we found a significant amount of assembled monomeric PSII complexes in the heterocysts thylakoid membranes. We measured in vitro light-driven electron transfer from PSII in heterocysts using an artificial electron donor, suggesting that under certain circumstances heterocysts might activate PSII. Parallel to my main research I also worked in a collaboration to elucidate the total proteome of Nostoc sp. strain 7120 and Nostoc punctiforme using quantitative shotgun proteomics. Several hundred proteins were quantified for both species. It was possible to trace the detailed changes that occurred in the energy and nitrogen metabolism of a heterocyst after differentiation. Moreover, the presence of PSII proteins identified in our membrane proteome was also confirmed and extended. Lastly, I studied how the heterocysts are capable of responding to variations in light quality as compared to vegetative cells. Using 77 K fluorescence spectroscopy on heterocysts and vegetative cells previously illuminated with light at specific wavelengths, I was able to demonstrate that heterocysts still possess a possibly modified but functional antenna system, capable of harvesting light and transferring energy preferentially to PSI. The characterization of the membrane and total proteome permitted to draw a more comprehensive and integrated picture of the interplay between the distinct metabolic processes that are carried out in each cell type at the same time; from oxygenic photosynthesis and carbon fixation in the vegetative cells to the anoxygenic cyclic photophosphorylation essential to power nitrogen assimilation in the heterocysts.
22

Assessing Taxonomic Issues with the Genera Anabaena, Aphanizomenon and Nostoc Using Morphology, 16S rRNA and efp genes

Beltrami, Orietta January 2008 (has links)
Cyanobacteria are an ancient lineage of gram-negative photosynthetic prokaryotes that play an important role in the nitrogen cycle in terrestrial and aquatic systems. Widespread cyanobacterial blooms have prompted numerous studies on the classification of this group, however defining species is problematic due to lack of clarity as to which characters best define the various taxonomic levels. The genera Anabaena, Aphanizomenon and Nostoc form one of the most controversial groups and are typically paraphyletic within phylogenetic trees and share similar morphological characters. This study’s purpose was to determine the taxonomic and phylogenetic relationships among isolates from these three genera using 16S rRNA and bacterial elongation factor P (efp) gene sequences as well as morphological analyses. These data confirmed the non-monophyly of Anabaena and Aphanizomenon and demonstrated that many of the isolates were intermixed among various clades in both gene phylogenies. In addition, the genus Nostoc was clearly not monophyletic and this finding differed from previous studies. The genetic divergence of the genus Nostoc was confirmed based on 16S rRNA gene sequence similarities (≥85.1%), and the isolates of Anabaena were genetically differentiated, contrary to previous studies (16S rRNA gene sequence similarities ≥89.4%). The morphological diversity was larger than the molecular diversity, since the statistical analysis ANOSIM showed that the isolates were morphologically well differentiated; however, the 16S rRNA gene sequence similarities showed some isolates as being related at the species level. Planktonic and benthic strains were not distinguished phylogenetically, although some well-supported clusters were noted. Cellular measurements (length and width of vegetative cells, end cells, heterocysts and akinetes) were noted to be the morphological characters that best supported the differentiation among isolates, more than qualitative characterization. Among the metric parameters, the length of akinetes resulted in better differentiation among isolates. The efp gene sequence analyses did not appear to be useful for the taxonomic differentiation at lower taxonomic levels, but gave well-supported clusters for Aphanizomenon that was supported by the morphological analyses. Both gene regions gave similar trees with the exception of the Aphanizomenon isolates which clustered together in phylogenetic trees based on the efp gene. This differed from the 16S rRNA gene in which this genus was paraphyletic with Anabaena species that were similar in morphology to Aphanizomenon. Hence, the application of multiple taxonomic criteria is required for the successful delineation of cyanobacterial species.
23

Assessing Taxonomic Issues with the Genera Anabaena, Aphanizomenon and Nostoc Using Morphology, 16S rRNA and efp genes

Beltrami, Orietta January 2008 (has links)
Cyanobacteria are an ancient lineage of gram-negative photosynthetic prokaryotes that play an important role in the nitrogen cycle in terrestrial and aquatic systems. Widespread cyanobacterial blooms have prompted numerous studies on the classification of this group, however defining species is problematic due to lack of clarity as to which characters best define the various taxonomic levels. The genera Anabaena, Aphanizomenon and Nostoc form one of the most controversial groups and are typically paraphyletic within phylogenetic trees and share similar morphological characters. This study’s purpose was to determine the taxonomic and phylogenetic relationships among isolates from these three genera using 16S rRNA and bacterial elongation factor P (efp) gene sequences as well as morphological analyses. These data confirmed the non-monophyly of Anabaena and Aphanizomenon and demonstrated that many of the isolates were intermixed among various clades in both gene phylogenies. In addition, the genus Nostoc was clearly not monophyletic and this finding differed from previous studies. The genetic divergence of the genus Nostoc was confirmed based on 16S rRNA gene sequence similarities (≥85.1%), and the isolates of Anabaena were genetically differentiated, contrary to previous studies (16S rRNA gene sequence similarities ≥89.4%). The morphological diversity was larger than the molecular diversity, since the statistical analysis ANOSIM showed that the isolates were morphologically well differentiated; however, the 16S rRNA gene sequence similarities showed some isolates as being related at the species level. Planktonic and benthic strains were not distinguished phylogenetically, although some well-supported clusters were noted. Cellular measurements (length and width of vegetative cells, end cells, heterocysts and akinetes) were noted to be the morphological characters that best supported the differentiation among isolates, more than qualitative characterization. Among the metric parameters, the length of akinetes resulted in better differentiation among isolates. The efp gene sequence analyses did not appear to be useful for the taxonomic differentiation at lower taxonomic levels, but gave well-supported clusters for Aphanizomenon that was supported by the morphological analyses. Both gene regions gave similar trees with the exception of the Aphanizomenon isolates which clustered together in phylogenetic trees based on the efp gene. This differed from the 16S rRNA gene in which this genus was paraphyletic with Anabaena species that were similar in morphology to Aphanizomenon. Hence, the application of multiple taxonomic criteria is required for the successful delineation of cyanobacterial species.
24

Heterocyst Morphogenesis and Gene Expression in Anabaena sp. PCC 7120

Mella Herrera, Rodrigo Andres 2010 August 1900 (has links)
Many multicellular cyanobacteria produce specialized nitrogen-fixing heterocysts. During diazotrophic growth of the model organism Anabaena (Nostoc) sp. strain PCC 7120, a regulated developmental pattern of single heterocysts separated by about 10 to 20 photosynthetic vegetative cells is maintained along filaments. Heterocyst structure and metabolic activity function to accommodate the oxygen-sensitive process of nitrogen fixation. This dissertation focuses on my research on heterocyst development, including morphogenesis, transport of molecules between cells in a filament, differential gene expression, and pattern formation. We using microarray experiments we found that conR (all0187) gene is necessary for normal septum-formation of vegetative cells, diazotrophic grow, and heterocyst morphogenesis. In our studies we characterized the expression of sigma factors genes in Anabaena PCC 7120 during heterocyst differentiation, and we found that the expression of sigC, sigG and sigE is localized primarily in heterocysts. Expression studies using sigE mutant showed that nifH is under the control of this specific sigma factor.
25

Biological functions of a blue-green alga, Nostoc commune var. sphaeroides Kützing (N. commune)

Rasmussen, Heather E. January 2008 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2008. / Title from title screen (site viewed Mar. 31, 2009). PDF text: ix, 168 p. : ill. ; 5 Mb. UMI publication number: AAT 3331442. Includes bibliographical references. Also available in microfilm and microfiche formats.
26

Evaluación de una crema dermocosmética con potencial actividad antioxidante y efecto humectante a base del extracto de Nostoc sphaericum “cushuro”

Baltodano Torres, Celia Candy January 2018 (has links)
Publicación a texto completo no autorizada por el autor / Elabora y evalúa la capacidad antioxidante y humectante de una crema dermocosmética a base del extracto liofilizado del Nostoc sphaericum “cushuro”. En primera instancia se realiza un tamizaje fitoquímico cualitativo para determinar los metabolitos que contiene la muestra en estudio, dando como positivo las pruebas de Dragendorf, Mayer, Bertrand, Sonenhei (alcaloides), saponinas y shinoda (flavonoides), a su vez da negativo para la prueba de tricloruro (fenoles); sin embargo, para determinar la actividad antioxidante de la crema, se realiza el método de DPPH, dándonos un IC50= 138.18mg/mL para la crema base, IC50= 25.37 mg/mL para la crema de concentración de 0.25%, IC50= 20.05 mg/mL para la crema de 0.5% y IC50= 19.95 mg/mL para la crema de 1%; con lo cual, estos valores nos indica que la crema de mayor concentración es la que tiene mayor actividad antioxidante. Se evalúa la estabilidad de la crema así como también el efecto humectante de la crema al 1%,sobre personas con piel seca utilizando el equipo DermAnalyzer, el cual indica el grado de humectación que la piel se encuentra, se utiliza tres cremas (crema base, crema comercial y crema del extracto liofilizado), de los cuales, la piel expuesta a la crema base mantiene su condición de piel seca, mientras que la crema en estudio, arroja valores positivos de humectación, similares al de la crema comercial. / Tesis
27

Evidence that a partner-switching regulatory system modulates hormogonium motility in the filamentous cyanobacterium Nostoc punctiforme

Riley, Kelsey Wynne 01 January 2018 (has links)
Partner-switching regulatory systems (PSRSs) are utilized by many different bacteria to regulate a wide array of cellular responses, from stress response to expression of virulence factors. The filamentous cyanobacterium Nostoc punctiforme can transiently differentiate motile filaments, called hormogonia, in response to various changes in the environment. Hormogonia utilize a Type IV pilus (T4P) complex in conjunction with a secreted polysaccharide for gliding motility along solid surfaces. This study identified three genes, designated hmpU, hmpW, and hmpV, encoding the protein components of a PSRS involved in regulation of hormogonium motility in N. punctiforme. Although mutant strains with in-frame deletions in hmpU, hmpW, and hmpV differentiated morphologically distinct hormogonium-like filaments, further phenotypic analysis demonstrated significant distinctions among the strains. The ∆hmpW strain contained a higher percentage of motile filaments that moved faster than the wild-type strain, while the ∆hmpU and ∆hmpV strains consisted of fewer motile filaments that moved at a slower rate compared to wild type. Immunoblotting and immunofluorescence of PilA, the major component of the pilus in the T4P system, showed that although all mutant strains appeared to express similar levels of PilA protein, the ∆hmpU and ∆hmpV strains displayed reduced extracellular PilA. Lectin blotting and staining with fluorescently-labeled UEA lectin demonstrated a decrease in extracellular hormogonium polysaccharide in the ∆hmpU and ∆hmpV strains, consistent with the current understanding that the polysaccharide is secreted via the T4P system. Epistasis analysis demonstrated that the ∆hmpW, ∆hmpV double-deletion mutant strain displayed reduced spreading in plate motility assays, similar to the ∆hmpV single mutant. Together, these results support a model in which the HmpU phosphatase and HmpW serine kinase control the phosphorylation state of the HmpV protein, modulating its activity on a downstream target to ultimately promote activation of the T4P motor complex and enhance hormogonium motility.
28

A trio of sigma factors control hormogonium development in Nostoc punctiforme

Gonzalez, Alfonso, Jr. 01 January 2019 (has links)
Cyanobacteria are prokaryotes capable of oxygenic photosynthesis, and for many species, nitrogen fixation, giving cyanobacteria an important role in global carbon and nitrogen cycles. Furthermore, multicellular filamentous cyanobacteria are developmentally complex, capable of differentiation into different cell types, including cells capable of nitrogen fixation and cells for motility, making them an ideal platform for studying development, as well as for practical use in biotechnology. Understanding how developmental programmes are activated require an understanding of the role of alternative sigma factors, which are required for transcriptional activation in bacteria. In order to investigate the gene regulatory network and to determine the role of alternative sigma factors in hormogonium development, real time PCR and Next Generation RNA-seq were used to measure expression levels of genes involved in hormogonium development and to further characterise the nature of the hormogonium developmental programme in the filamentous cyanobacterium Nostoc punctiforme. The results support a model where a hierarchal sigma factor cascade activates hormogonium development, in which expression of sigJ activates expression of the sigma factors sigC and sigF, as well as a wide range of other genes, including those involved in the type IV pilus (T4P), chemotaxis-like systems, and cell architecture. SigC and SigF have more limited roles: cell division genes are dependent on SigC and pilA expression was stringently SigF-dependent. Interestingly, SigC was also found to enhance expression of sigJ during hormogonium development, implying a potential positive feedback loop between sigJ and sigC.
29

The Investigation of Biophysical and Biological Function of PRPS from Nostoc PCC 7120

Zhang, Ruojing 06 April 2021 (has links)
No description available.
30

Phylogenetic Analysis of the Symbiotic Nostoc Cyanobacteria as Assessed by the Nitrogen Fixation (Nifd) Gene

Salem, Hassan Samy 18 August 2010 (has links)
No description available.

Page generated in 0.042 seconds