• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Novolac-Phthalonitrile and Siloxane-Phthalonitrile Resins cured with low melting Novolac Oligomers for Flame Retardant Structural Thermosets

Hardrict, Shauntrece Nicole 15 January 2004 (has links)
The chemical modification of low molecular weight novolac oligomers and siloxane/silane-containing monomers has led to novel phthalonitrile derivatives with low glass transition temperatures, ranging from -25 to 75 ºC. Multi-functional, low molecular weight phenol-formaldehyde novolac resins were blended with these novel phthalonitrile derivatives to achieve low viscosity resin blends. Moderate temperatures and rapid curing cycles were employed (200 ºC, 1 h and 225 ºC, 4h) to produce networks with high glass transition temperatures (> 250 ºC). A decrease in the sharp band at 2230 cm⁻¹, attributed to the nitrile functionality of the phthalonitrile resin, was monitored in FTIR studies and indicated the progress of the reactions. Ninety percent conversion was achieved within ~ 30 min. Thermal analysis of siloxane-phthalonitrile/novolac networks cured for 1h at 200 ºC and 4h at 225 ºC did not exhibit glass transition temperatures below 250 ºC. In dynamic TGA studies, 5% weight loss temperatures up to 418 ºC were observed, and the materials exhibited 50 to 56 % char at 800 ºC in nitrogen. Networks prepared from a resin blend containing 50 weight% of a phthalonitrile derivative of a 260 g mol⁻¹ novolac oligomer, 50 weight% of the 260 g mol⁻¹ novolac oligomer, and 1.5 mol % triphenylphosphine (based on novolac) (NOV/NOV/TPP) cured at 200 ºC for 1h, did not exhibit a Tg below 250 ºC via DSC. These networks exhibited a 5% weight loss temperature of 350 ºC, and 70 % char at 800 ºC in TGA studies under nitrogen. This degree of char formation makes these materials appealing for use in carbon-carbon composites. Post-curing these networks at 200 ºC for 1h, and then at 225 ºC for 4h, resulted in high thermo-oxidative stability, with a 5% weight loss observed at 447 ºC and 50 % char at 800 ºC. Blending tetramethyldisiloxane phthalonitrile monomers with 260 g mol⁻¹ novolac oligomers afforded prepolymer resins with low melt viscosities, 560 mPa s at 80 ºC. Such viscosities may allow these resins to be processed via vacuum assisted resin transfer molding (VARTM) at low temperatures and heated at elevated temperatures to produce flame resistant three-dimensional networks. / Master of Science
2

[en] CO2 CORROSION IMPACT ON AISI 1020 STEEL WITH POLYMERIC COATING / [pt] IMPACTO DA CORROSÃO POR CO2 NO AÇO AISI 1020 PROTEGIDO COM REVESTIMENTOS POLIMÉRICOS

ALEXANDRE REIS PINTO DE CASTRO 25 January 2018 (has links)
[pt] Os ativos de produção da indústria petrolífera estão atingindo reservas de petróleo em maiores profundidades e condições ambientais mais diversas impostas pelo subsolo marinho, neste cenário os problemas ocasionados pela corrosão acarretam maiores perdas econômicas. O CO2 está presente na indústria petrolífera geralmente através da queima de hidrocarbonetos, sendo que o CO2 forma com a água o ácido carbônico (H2CO3) que gera grave corrosão nos metais em contato. Esta pesquisa avaliou o desempenho de um revestimento comercial de base polimérica reforçado com nanotubos de carbono e de outro revestimento de resina epóxi NOVOLAC, ambos aplicados sobre o aço carbono AISI 1020. Estes corpos de prova revestidos foram imersos em uma solução salina com 3 porcento wt de NaCl e em outra solução salina com 3,5 porcento wt de CaCl2, ambas saturadas com CO2., pressão de 75 bar, temperatura de 75 graus C e tempo de imersão de 360 horas. Foram empregadas técnicas de Espectroscopia de Impedância Eletroquímica (EIS), Microscopia Eletrônica de Varredura (MEV), Espectroscopia de Energia Dispersiva (EDS) e Difração de Raios X (DRX). Os resultados mostraram que o revestimento de resina epóxi NOVOLAC apresentou o melhor desempenho em ambos os meios para as condições utilizadas neste trabalho. / [en] The production assets of the oil industry are reaching oil reserves at greater depths and more diverse environmental conditions imposed by the marine subsoil, in this scenario the problems caused by corrosion lead to greater economic losses. CO2 is present in the petroleum industry generally through the burning of hydrocarbons, with CO2 forming the acidic acid (H2SO3) that generates severe corrosion in the metals. This study evaluated the performance of a nanoparticularized coating with carbon nanotubes and another NOVOLAC epoxy impregnated coating, both coating AISI 1020 carbon steel. These coated specimens were immersed in a saline solution containing 3 percent wt NaCl and in another saline solution with 3.5 percent wt CaCl2, both saturated with CO2, 75 bar of pressure, 75 celsius degrees and immersion for 360 hours. Techniques such as Electrochemical Impedance Spectroscopy (EIS), Scanning Electron Microscopy (SEM), Dispersive Energy Spectroscopy (EDS) and X-ray Diffraction (XRD) were used. The results showed that the NOVOLAC epoxy coating showed the best performance in both saline solutions for the conditions studied.
3

The Fabrication of Flexible Substrate Using BaTi4O9/Polymer Composites for High Frequency Application

Lee, Yi-Chih 31 July 2007 (has links)
The flexible substrate was fabricated by BaTi4O9 mixed with O-Cresol Novolac Epoxy, polyether imide or surface active agents. The electrical and physical characteristic measured had been finished. The dielectric property influence of substrate was changed from percentage of BaTi4O9. The dielectric constant model was used by Jayasundere and Smith equation (J. S. eq.) and Lichtenecker equation (L. eq.) The study of crystalline grain, orientation and phase transfer temperature was used by SEM, XRD, and DSC, respectively. The dielectric constant and dielectric loss tangent of the composite was measured using an HP4294A impedance analyzer. The TM mode calculated by resonate frequency of the composite was measured using an HP4156C network analyzer. The dielectric constant was obtained to TM mode at high frequency. The result was showed that dielectric constant at low frequency of BaTi4O9, OCN Epoxy and PEI are 57, 5.8 and 3.65, respectively. OCN Epoxy is better than PEI of electrical characteristic. However, OCN Epoxy is not flexible. For this reason, the PEI was focused on electrical property at high frequency. The BaTi4O9 exhibited a dielectric constant of 39 at frequency during 3~10 GHz. The dielectric constant was measured of 10 at frequency during 2~16 GHz with 70 wt% PEI composite. The dielectric constant is higher than FR-4 substrate to 6.4 of the composite. The low dielectric constant is obtaining to reduce stuffing.
4

Stabilization of Horseradish Peroxidase Using Epoxy Novolac Resins for Applications with Microfluidic Paper-Based Analytical Devices

Chaplan, Cory A. 01 June 2014 (has links)
Microfluidic paper-based analytical devices (microPADs) are an emerging platform for point-of-care diagnostic tests for use by untrained users with potential applications in healthcare, environmental monitoring, and food safety. These devices can be developed for a multitude of different tests, many of which employ enzymes as catalysts. Without specialized treatment, some enzymes tend to lose their activity when stored on microPADs within 48 hours, which is a major hurdle for taking these types of devices out of the laboratory and into the real world. This work focused on the development of simple methods for stabilizing enzymes by applying polymers to chromatography paper. The longterm stabilization was exlored and SU-8 of various concentrations was found to stabilize horseradish peroxidase for times in excess of two weeks. A variety of microPAD fabrications, enzyme dispensing methods, and substrate delivery techniques were explored.
5

ENVIRONMENTALLY-COMPLIANT NOVOLAC SUPERPRIMERS FOR CORROSION PROTECTION OF ALUMINUM ALLOYS

ASHIRGADE, AKSHAY A. 02 October 2006 (has links)
No description available.
6

Cresol Novolac/Epoxy Networks: Synthesis, Properties, and Processability

Lin-Gibson, Sheng 27 April 2001 (has links)
Void-free phenolic networks have been prepared by the reaction of phenolic novolac resins with various diepoxides. The stoichiometric ratio can be adjusted to achieve networks with good mechanical properties while maintaining excellent flame retardance. A series of linear, controlled molecular weight, 2,6-dimethylphenol endcapped cresol novolac resins have been synthesized and characterized. The molecular weight control was achieved by adjusting the stoichiometric ratio of cresol to 2,6-dimethylphenol and using an excess of formaldehyde. A dynamic equilibrium reaction was proposed to occur which allowed the targeted molecular weight to be obtained. A 2000 g/mol ortho-cresol novolac resin was crosslinked by a diepoxide oligomer and by an epoxidized phenolic oligomer in defined weight ratios and the structure-property relationships were investigated. The networks comprised of 60 or 70 weight percent cresol novolac exhibited improved fracture toughness, high glass transition temperatures, low water uptake, and good flame retardance. The molecular weights between crosslinks were also determined for these networks. The stress relaxation moduli were measured as a function of temperature near the glass transition temperatures. Crosslink densities as well as the ability to hydrogen bond affect the glassy moduli of these networks. Rheological measurements indicated that cresol novolac/epoxy mixtures have an increased processing window compared to phenolic novolac/epoxy mixtures. Maleimide functionalities were incorporated into cresol novolac oligomers, and these were crosslinked with bisphenol-A epoxy. The processability of oligomers containing thermally labile maleimides were limited to lower temperatures. However, sufficiently high molecular weight oligomers were necessary to obtain good network mechanical properties. Networks prepared from 1250 g/mol cresol novolac containing maleimide functionilities and epoxy exhibited good network properties and could be processed easily. Latent triphenylphosphine catalysts which are inert at processing temperatures (~140°C) but possess significant catalytic activity at cure temperatures 180-220°C were necessary for efficient composite fabrication using phenolic novolac/epoxy matrix resins. Both sequestered catalyst particles and sizings were investigated for this purpose. Phenolic novolac/epoxy mixtures containing sequestered catalysts exhibited significantly longer processing time windows than those containing free catalysts. The resins also showed accelerated reaction rates in the presence of sequestered catalysts at cure temperatures. Trihexylamine salt of a poly(amic acid) was sized onto reinforcing carbon fibers and the composite properties indicated that fast phenolic novolac/epoxy cure could be achieved in its presence. / Ph. D.
7

[en] ANTICORROSIVE ORGANIC COATING NANOFILLED WITH REDUCED GRAPHENE OXIDE IN CO2 ENVIRONMENT / [pt] REVESTIMENTO ORGÂNICO ANTICORROSIVO NANO ADITIVADO COM ÓXIDO DE GRAFENO REDUZIDO EM AMBIENTE DE CO2

ANANIAS ALEXANDRE EMMERICK 14 June 2023 (has links)
[pt] Esta pesquisa avaliou a resistência a corrosão de revestimentos de base em resina epóxi, reforçada com 0,1% wt e 0,5% wt de óxido de grafeno reduzido (rGO), aplicado sobre um substrato em aço carbono AISI 1020. Como teste de corrosão foi aplicado testes de imersão em solução com 3,0% wt de NaCl saturadas com CO2, em um vaso de pressão a 70 bar na temperatura de 40 ᵒC, por 528 h. Os revestimentos foram avaliados por teste de aderência (Pull Off), microdureza (Dureza Shore D) e caracterizado por Microscopia Eletrônica de Varredura (MEV) quanto a qualidade de ancoragem do revestimento ao substrato, porosidade e espessura, para a análise de existência de pites na superfície do substrato metálicos foi utilizada microscopia ótica (MO). Os resultados obtidos evidenciaram que os revestimentos nas três condições, como recebido, aditivados com 0,1% wt e 0,5% de rGO tiveram a mesma eficiência na proteção do substrato metálico, todos igualmente, evitaram a formação de pites nas condições de testes propostas. Para adição de 0,1% wt de rGO ocorreu refinamento dos poros e a adição de 0,5% wt promoveu drástica redução da densidade de poros. A adição do rGO não influenciou na Dureza Shore D dos revestimentos. Para pré teste de corrosão, o revestimento com 0,1% wt de rGO obteve maior densidade de poros e menor valor de dureza, seguido pelo 0,0% wt e posterior 0,5% wt de rGO. Para pós testes de corrosão a ordem é invertida. Os resultados pós testes de corrosão indicaram que a porosidade possibilitou a permeação da solução nos revestimentos, e está relacionada com as bolhas e empolamentos, que influenciaram na dureza. A adição de 0,1% wt e 0,5% wt de rGO não influenciou na ancoragem dos revestimentos, obtendo boa acomodação nas irregularidades da superfície metálica do substrato. / [en] This research evaluated the corrosion resistance of an epoxy resin-based coat, reinforced with 0.1 and 0.5 wt% of reduced graphene oxide (rGO), applied to AISI 1020 carbon steel. Immersion tests in aqueous solution with 3.0 wt% NaCl saturated with CO2, in a pressurized cell at 70 bar at 40⁰C, for 528 h. The coating was evaluated by Pull-Off Test, microhardness (Shore D hardness), and Scanning Electron Microscopy (SEM). The quality of the coating anchoring to the substrate, porosity, and thickness was evaluated. The presence of pits on the surface of the metallic substrate was assessed by Optical Microscopy (OM). The results obtained indicated that the addition of rGO contributed to greater corrosion resistance and provided better structural integrity to the coating. The results obtained showed that the coatings under the three conditions, as received and 0.1 and 0.5wt% rGO additions had the same efficiency in protecting the metallic substrate, avoiding pitting. Pore refinement occurred for 0.1wt % rGO, and the addition of 0.5wt% promoted a drastic reduction in pore density. The addition of rGO did not influence on the Shore D Hardness of the coatings. For a precorrosion test, the coating with 0.1wt% of rGO obtained higher pore density and lower hardness value, followed by 0 wt% and later 0.5 wt% of rGO. For the post corrosion test, the order is reversed. The results of the post corrosion test indicated that the porosity allowed the permeation of the solution in the coatings and is related to the bubbles and blistering, which influenced the hardness. The addition of 0.1 and 0.5 wt% or rGO did not affect the coating anchoring, obtaining reasonable accommodation in the irregularities of the substrate metallic surface.
8

Transport Properties and Durability of LCP and FRP materials for process equipment

Römhild, Stefanie January 2010 (has links)
This thesis focuses on transport properties and durability of liquid crystalline polymers (LCP)and fibre reinforced plastics (FRP) with regard to application in industrial process equipment.In the first part of the study the possibility of using a thermotropic LCP of type Vectra A950as lining material for FRP process equipment was investigated. Its performance wascompared to that of a fluorinated ethylene propylene copolymer (FEP) with respect tochemical and permeation resistance. Transport property and chemical resistance data wereestablished for different types of LCP film (compression molded, uniaxially and biaxiallyoriented film) exposed to selected chemicals chosen to represent typical industrial processenvironments. Annealing of the LCP, which may reduce the disclination density and henceimprove the barrier properties, induced a crystallinity increase, but did not significantlyimprove the barrier and chemical resistance properties. Different surface treatments toincrease the bonding between the LCP and FRP were explored. The conclusion was that LCPhas potential to serve as lining material for FRP in contact with water, organic solvents andnon-oxidizing acid environments, although certain issues, such as jointing techniques, stillhave to be evaluated. The second part of the study focused on transport and long-termproperties of commercial thermoset and FRP materials for industrial process equipment inaqueous environments (50 – 95 °C, water activity 0.78 – 1, exposure time ≤ 1000 days). Thewater transport properties in different thermosets were related to their chemical structureusing the solubility parameter concept. The transport of water in the thermosets with differentchemical structures could be predicted from the water activity, regardless of the actual type ofionic or non-ionic solute in the solution. An empirical relationship, independent of boththermoset chemistry and temperature, was established to describe the water concentration inthe thermoset as a function of water activity and the water concentration in pure water. Inlong-term, the water concentration in the thermosets increased with exposure time. Thisseemed to be primarily related to stress relaxation processes induced by water absorption andcertain leaching effects. The effects of hydrolysis seemed to be small. The glass fibrereinforcement may to various extents affect the water transport properties by capillarydiffusion and additional absorption around fibre bundles. The extent of such processesseemed to depend on temperature, water activity and the type of thermoset and reinforcement.The present work may be a useful contribution to an increased understanding of water effectsand durability of FRP process equipment. However, open questions still remain for a morecomprehensive durability analysis. / QC20100629
9

Thermisch härtende Polymerverbundmaterialien als Basis für neue Befestigungssysteme / Thermally curable polymeric composit material as a basis for new chemical fixing systems

Pöhlmann, Milena 07 December 2006 (has links) (PDF)
Mit der Entwicklung und Einführung ökologischer Bauweise im Neubau sowie neuen Baustoffsystemen in Sandwichbauweise wird es zunehmend erforderlich, neue effektive Befestigungsvarianten zu entwickeln, die eine dauerhafte Fixierung auch unter sicherheitstechnischen Bestimmungen sowie aus Garantie- bzw. haftungsrechtlichen Gründen ermöglichen. Die aus der Praxis bisher bekannten chemischen Befestigungssysteme (Zweikomponentenverbundmörtel, Verbundankerpatronen) weisen hinsichtlich der Applikation unter bautechnischen Bedingungen noch einige Nachteile auf. Dazu gehören vor allem längere Aushärtungszeiten zur Realisierung der abschließenden Verbundfestigkeit, Inhomogenitäten im Verbund, der Einsatz toxischer Verbindungen und eine Limitierung der Applikationsmöglichkeiten in horizontalen und Überkopf-Einsatzbereichen sowie Hohlkammersystemen. Alle zuvor genannten Punkte haben bis jetzt die Nutzung solcher Verbundwerkstoffe als universale Anwendungsmöglichkeit verhindert. Ein neues chemisches Befestigungssystem, welches aus Novolak gehärteten mit Hexamethylentetramin (Hexa) und anorganischen Füllstoff besteht, wurde für Applikationen in Beton entwickelt. Das Bindemittel härtet bei der Temperaturzuführung aus. Die unkatalysierte Befestigungsmasse zeigt bei einer Temperatur zwischen 150-300 °C eine hohe Reaktivität. Die Vorteile dieses Systems sind die unbegrenzte Lagerfähigkeit der vorgemischten härtbaren Masse sowie die Gewährleistung einer homogenen Netzwerkstruktur im gesamten Verbund und sie ist frei von giftigen und flüchtigen Substanzen. Auf den Einsatz toxischer Substanzen wurde verzichtet. In dieser Arbeit wurde die Gesamtkinetik der Reaktion während des Aushärtungsprozesses dieser Polymerkomposite untersucht. Die DSC- (nicht-isothermen, isothermen) und MDSC-Untersuchungen haben sich als ein sicheres Verfahren zur Qualitätskontrolle des Aushärtezustands der Befestigungssysteme herausgestellt. Parallel zur nicht-isothermischen und isothermischen DSC wurden Leitfähigkeitsmessungen durchgeführt, um den Endpunkt der Aushärtungsreaktion zu bestimmen. / The development and introduction of ecological construction methods and the use of sandwich materials make it necessary to develop new fixing systems and technologies. Dealing with the application in concrete and other substrates commercial chemical fixing systems show some disadvantages up to date. Especially the rather long curing time in order to realize the final bond strength, inhomogenities in the composite, the partial use of toxic substances and application limits of such systems in horizontal direction as well as hollow section materials has so far prevented the use of such composites for all-purpose applications. A new chemical fixing system, which consists of hexamethylene tetramine (hexa) cured novolac and inorganic filler, was developed for application in concrete. It is applied by a thermo-curing procedure. The uncatalyzed curable mixture has a high reactivity at temperature between 150-300 °C. Compared with commercial chemical fixing systems, the premixed curable mass has many benefits. First it has a unique storage stability and second, it is free of toxic and volatile substances. Another important aspect is, it is self-foaming. In this study was investigated the overall kinetics of the reaction during the curing process of these polymer composites. An appropriate method for this experiment proved to be the DSC in isothermal and non-isothermal mode and MDSC. This turned out to be a safe quality control technique for these systems. Parallel to the non-isothermal and isothermal DSC conductivity measurements have been performed to determine the end point of the curing reaction.
10

Thermisch härtende Polymerverbundmaterialien als Basis für neue Befestigungssysteme

Pöhlmann, Milena 16 October 2006 (has links)
Mit der Entwicklung und Einführung ökologischer Bauweise im Neubau sowie neuen Baustoffsystemen in Sandwichbauweise wird es zunehmend erforderlich, neue effektive Befestigungsvarianten zu entwickeln, die eine dauerhafte Fixierung auch unter sicherheitstechnischen Bestimmungen sowie aus Garantie- bzw. haftungsrechtlichen Gründen ermöglichen. Die aus der Praxis bisher bekannten chemischen Befestigungssysteme (Zweikomponentenverbundmörtel, Verbundankerpatronen) weisen hinsichtlich der Applikation unter bautechnischen Bedingungen noch einige Nachteile auf. Dazu gehören vor allem längere Aushärtungszeiten zur Realisierung der abschließenden Verbundfestigkeit, Inhomogenitäten im Verbund, der Einsatz toxischer Verbindungen und eine Limitierung der Applikationsmöglichkeiten in horizontalen und Überkopf-Einsatzbereichen sowie Hohlkammersystemen. Alle zuvor genannten Punkte haben bis jetzt die Nutzung solcher Verbundwerkstoffe als universale Anwendungsmöglichkeit verhindert. Ein neues chemisches Befestigungssystem, welches aus Novolak gehärteten mit Hexamethylentetramin (Hexa) und anorganischen Füllstoff besteht, wurde für Applikationen in Beton entwickelt. Das Bindemittel härtet bei der Temperaturzuführung aus. Die unkatalysierte Befestigungsmasse zeigt bei einer Temperatur zwischen 150-300 °C eine hohe Reaktivität. Die Vorteile dieses Systems sind die unbegrenzte Lagerfähigkeit der vorgemischten härtbaren Masse sowie die Gewährleistung einer homogenen Netzwerkstruktur im gesamten Verbund und sie ist frei von giftigen und flüchtigen Substanzen. Auf den Einsatz toxischer Substanzen wurde verzichtet. In dieser Arbeit wurde die Gesamtkinetik der Reaktion während des Aushärtungsprozesses dieser Polymerkomposite untersucht. Die DSC- (nicht-isothermen, isothermen) und MDSC-Untersuchungen haben sich als ein sicheres Verfahren zur Qualitätskontrolle des Aushärtezustands der Befestigungssysteme herausgestellt. Parallel zur nicht-isothermischen und isothermischen DSC wurden Leitfähigkeitsmessungen durchgeführt, um den Endpunkt der Aushärtungsreaktion zu bestimmen. / The development and introduction of ecological construction methods and the use of sandwich materials make it necessary to develop new fixing systems and technologies. Dealing with the application in concrete and other substrates commercial chemical fixing systems show some disadvantages up to date. Especially the rather long curing time in order to realize the final bond strength, inhomogenities in the composite, the partial use of toxic substances and application limits of such systems in horizontal direction as well as hollow section materials has so far prevented the use of such composites for all-purpose applications. A new chemical fixing system, which consists of hexamethylene tetramine (hexa) cured novolac and inorganic filler, was developed for application in concrete. It is applied by a thermo-curing procedure. The uncatalyzed curable mixture has a high reactivity at temperature between 150-300 °C. Compared with commercial chemical fixing systems, the premixed curable mass has many benefits. First it has a unique storage stability and second, it is free of toxic and volatile substances. Another important aspect is, it is self-foaming. In this study was investigated the overall kinetics of the reaction during the curing process of these polymer composites. An appropriate method for this experiment proved to be the DSC in isothermal and non-isothermal mode and MDSC. This turned out to be a safe quality control technique for these systems. Parallel to the non-isothermal and isothermal DSC conductivity measurements have been performed to determine the end point of the curing reaction.

Page generated in 0.0319 seconds