• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 37
  • 31
  • 17
  • 10
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 308
  • 80
  • 68
  • 48
  • 39
  • 37
  • 37
  • 36
  • 36
  • 33
  • 29
  • 28
  • 27
  • 27
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Charakteristické parametry palivových trysek / Characteristic parameters of fuel nozzles

Ledererová, Lucie January 2017 (has links)
Many industrial applications acquire necessary thermal energy through the combustion process. The basic element of each combustion appliance is a burner and one~part~of~it~is a~nozzle system that supplies fuel to a combustion chamber. The geometry of the fuel nozzle significantly affects the intensity of mixing the fuel with the combustion air and thus the stability of the combustion. The main subject of~this diploma thesis is~determination of~velocity coefficients for nozzles with different geometries. The knowledge of~correct values of~velocity coefficients is a key parameter for the design of~the burner and~its subsequent operation. For the calculation of~velocity coefficients, the exit nozzle velocities were used. For chosen nozzles, a~theoretical exit nozzle velocities were calculated. They were compared with the actual exit nozzle velocities, which were measured experimentally using the hot-wire anemometry, and with velocities, which were calculated using the CFD simulation method.
72

Investigation on how additive manufacturing with post-processing can be used to realize micronozzles

Bugurcu, Alan January 2022 (has links)
This is predominantly a qualitative study on the manufacturing of micronozzles with an additive manufacturing (AM) technique, namely the laser-powered powder bed fusion (PBF-LB).  Manufacturing of micronozzles with standard microelectromechanical system technology often results in 2.5-D or close to 3-D structures and does not yield a fully rotationally symmetric nozzle. For this reason, AM can be a better solution. However, the structures obtained with PBF-LB exhibit very rough surfaces which will impair the performance of the micronozzle. To improve the surface finish electropolishing was performed on the interior walls.  Given the shape and the scale of the components, uniformity of the polishing is a challenge, calling for an inventive electrode configuration and electrolyte feed solution. The approach was to integrate an electrode on the inside of the converging part of the nozzle, to serve as a cathode for the electropolishing, already in the process, and to make the nozzle itself the vital part of the fluidic system.  With this, titanium micronozzles were manufactured with throat diameters varying between 300 and 800 μm. With the resolution of the used AM technique, it was possible to integrate the internal electrode in the micronozzles with a designed throat diameter down to 600 μm. Below this, the anode, and cathode, sometimes made contact short-circuiting the cell. Profilometry showed a decrease of the average surface roughness (𝑅𝑅𝑎𝑎) with 15-60 % for the electropolished micronozzles. The Schlieren imaging showed an exhaust that followed the throat’s axial direction and also demonstrated pressure disks and, hence, a supersonic jet exhaust. This study has shown that AM is a viable choice for manufacturing of rotationally symmetric micronozzles, and that electropolishing could be used to decrease the surface roughness on their inside uniformly with the integration of a cathode.
73

Facility effects on Helicon ion thruster operation

Caruso, Natalie R. S. 27 May 2016 (has links)
In order to enable comparison of Helicon ion thruster performance across different vacuum test facilities, an understanding of the effect of operating pressure on plasma plume properties is required. Plasma property measurements are compared for thruster operation at two separate vacuum facility operating pressures to determine the effect of neutral ingestion on Helicon ion thruster operation. The ion energy distribution function (IEDF), electron temperature, ion number density, and plasma potential are measured along the thruster main axis for a replica of the Madison Helicon eXperiment. Plasma property values recorded at the ‘high-pressure condition’ (3.0×10^(-4) Torr corrected for argon) are compared to values recorded at the ‘low-pressure condition’ (1.2×10^(-5) Torr corrected for argon) for thruster operation at 100 - 500 watts radio frequency forward power, 340 – 700 gauss source region magnetic field strength, and 1.3 - 60 sccm argon volumetric flow rate (0.039-1.782 mg/s). Differences in plasma behavior at the ‘high-pressure condition’ result from two primary neutral-plume interactions: collisions between accelerated beam ions and ingested neutrals leading to a reduction of ion energy and neutral ionization downstream of the thruster exit due to electron-neutral collisions. Electron temperature at higher operating pressures is lowered due to an electron cooling effect resulting from repeated collisions with neutral atoms. Results suggest that Helicon ion thruster plasma properties are greatly influenced when subjected to neutral ingestion.
74

Electrohydraulic servovalves – past, present, and future

Plummer, Andrew 02 May 2016 (has links) (PDF)
In 2016 it is 70 years since the first patent for a two-stage servovalve was filed, and 60 years since the double nozzle-flapper two-stage valve patent was granted. This paper reviews the many alternative servovalve designs that were investigated at that time, focusing on two-stage valves. The development of single-stage valves – otherwise known as direct drive or proportional valves – for industrial rather than aerospace application is also briefly reviewed. Ongoing research into alternative valve technology is then discussed, particularly focussing on piezoelectric actuation and the opportunities afforded by additive manufacturing.
75

A Study of Different Methods for Inclusion Characterization towards On-line use during Steelmaking

Janis, Diana January 2015 (has links)
The interest of gaining on-line information related to non-metallic inclusions during the steelmaking process has recently increased due to the development as well as the promising results of the Pulse Distribution Analysis with Optical Emission Spectroscopy method (PDA/OES). Even though, the time from sampling to presented results on inclusions is only about 5-10 minutes, the method has also shown limitations with respect to the determination of some inclusion characteristics. Therefore, a first step was to perform a study on other methods such as the cross-section method (CS) on a polished sample surface, the cross-section after etching method (CSE), the bromine-methanol extraction method (BME), and the electrolytic extraction method (EE). This study focused on the evaluation of these methods with respect to the time consumption for preparation and analysis of a sample, the analyzed volume and the determination of inclusion and cluster characteristics such as size, number, particle size distribution (PSD) and composition. The CS and CSE methods were found to be suitable in the determination of the largest cluster in a sample which can be recommended in order to select proper extraction parameters for further studies. The BME method was considered to be fast with the possibility of analyzing a large volume. However, the used solution is chemically stronger compared to electrolytic extraction solutions, which can affect the results. In most aspects, the EE method was found to be the most stable, reliable and accurate method with some limitations regarding the time aspect. Based on this conclusion, the EE method was selected for a comparative study with the PDA/OES method. Reliably detected size ranges by using the PDA/OES method were defined for two low-alloyed steel grades. These are 2.0-5.7 μm and 1.4-5.7 μm for steel samples taken before and after a Ca-addition during the secondary steelmaking, respectively. Moreover, agreements between the EE and PDA/OES methods were observed in the average size and number of detected inclusions when only inclusions with the size &gt; 2 μm were considered. Also, a theoretical minimum size and a maximum number ofinclusions present in the steel sample, which can be detected by using the PDA/OES method, were estimated. The work continued by successfully applying the EE method to study correlations between inclusions observed in the liquid steel samples and in a clogged nozzle (clogging material). It was found that the average sizes of spherical and non-spherical inclusions observed in the steel corresponded well with those observed in the clogging material. However, there were some differences in the frequencies of these inclusions. This was explained by a possible transformation of the present inclusions due to a reoxidation and a reaction with the nozzle refractory of the steel melt. The results of this study may contribute in the selection of proper process parameters or inclusion characteristics for future studies on the improvement and application of on-line methods. Finally, suggestions on how to present and interpret data obtained by the PDA/OES method during production of stainless steels were given in the present thesis. More specifically, the possibilities of defining operating windows with respect to inclusion composition and the use of a B-factor for Al (the total content of Al in inclusions detected by using the PDA/OES method) during the secondary steelmaking were discussed. In addition, a correlation study between B-factors for Al and numbers of inclusions (dV &gt; 4 μm) obtained by using the PDA/OES method on process samples, and corresponding slivers indices from plate products was performed. The results showed a moderate correlation between these parameters as well as an increase of the slivers index with increased values of the chosen PDA/OES data. This indicates that it could be possible to predict when there is an increased risk of having slivers on the final rolled product at an early stage of the steelmaking process. / <p>QC 20150525</p>
76

Two-Dimensional Numerical Study of Micronozzle Geometry

Pearl, Jason M. 01 January 2016 (has links)
Supersonic micronozzles operate in the unique viscosupersonic flow regime, characterized by large Mach numbers (M>1) and low Reynolds numbers (Re<1000). Past research has primarily focused on the design and analysis of converging-diverging de Laval nozzles; however, plug (i.e. centerbody) designs also have some promising characteristics that might make them amenable to microscale operation. In this study, the effects of plug geometry on plug micronozzle performance are examined for the Reynolds number range Re = 80-640 using 2D Navier-Stokes-based simulations. Nozzle plugs are shortened to reduce viscous losses via three techniques: one - truncation, two - the use of parabolic contours, and three - a geometric process involving scaling. Shortened nozzle are derived from a full length geometry designed for optimal isentropic performance. Expansion ratio (ε = 3.19 and 6.22) and shortened plug length (%L = 10-100%) are varied for the full Reynolds number range. The performance of plug nozzles is then compared to that of linear-walled nozzles for equal pressure ratios, Reynolds numbers, and expansion ratios. Linear-walled nozzle half-angle is optimized to to ensure plug nozzles are compared against the best-case linear-walled design. Results indicate that the full length plug nozzle delivers poor performance on the microscale, incurring excessive viscous losses. Plug performance is increased by shortening the nozzle plug, with the scaling technique providing the best performance. The benefit derived from reducing plug length depends upon the Reynolds number, with a 1-2% increase for high Reynolds numbers an up to 14% increase at the lowest Reynolds number examined. In comparison to Linear-walled nozzle, plug nozzles deliver superior performance when under-expanded, however, this trend reverses at low pressure ratios when the nozzles become over-expanded.
77

An optical investigation of cavitation phenomena in true-scale high-pressure diesel fuel injector nozzles

Reid, Benjamin A. January 2010 (has links)
Efforts to improve diesel fuel sprays have led to a significant increase in fuel injection pressures and a reduction in nozzle-hole diameters. Under these conditions, the likelihood for the internal nozzle flow to cavitate is increased, which potentially affects spray breakup and atomisation, but also increases the risk of causing cavitation damage to the injector. This thesis describes the study of cavitating flow phenomena in various single and multi-hole optical nozzle geometries. It includes the design and development of a high-pressure optical fuel injector test facility with which the cavitating flows were observed. Experiments were undertaken using real-scale optical diesel injector nozzles at fuel injection pressures up to 2050 bar, observing for the first time the characteristics of the internal nozzle-flow under realistic fuel injection conditions. High-speed video and high resolution photography, using laser illumination sources, were used to capture the cavitating flow in the nozzle-holes and sac volume of the optical nozzles, which contained holes ranging in size from 110 micrometers to 300 micrometers. Geometric cavitation in the nozzle-holes and string cavitation formation in the nozzle-holes and sac volume were both observed using transient and steady-state injection conditions; injecting into gaseous and liquid back pressures up to 150 bar. Results obtained have shown that cavitation strings observed at realistic fuel injection pressures exhibit the same physical characteristics as those observed at lower pressures. The formation of string cavitation was observed in the 300 micrometers multi-hole nozzle geometries, exhibiting a mutual dependence on nozzle flow-rate and the geometry of the nozzle-holes. Pressure changes, caused by localised turbulent perturbations in the sac volume and transient fuel injection characteristics, independently affected the geometric and string cavitation formation in each of the holes. String cavitation formation of was shown to occur when free-stream vapour was entrained into the low pressure core of a sufficiently intense coherent vortex. Hole diameters less than or equal to 160 micrometers were found to suppress string cavitation formation, with this effect a result of the reduced nozzle flow rate and vortex intensity. Using different hole spacing geometries, it was demonstrated that the formation of cavitation strings in a particular geometry became independent of fuel injection and back pressure once a threshold pressure drop across the nozzle had been reached.
78

DESIGN AND OPTIMIZATION OF PERISTALTIC MICROPUMPS USING EVOLUTIONARY ALGORITHMS

Bhadauria, Ravi 26 August 2009 (has links)
A design optimization based on coupled solid–fluid analysis is investigated in this work to achieve specific flow rate through a peristaltic micropump. A micropump consisting of four pneumatically actuated nozzle/diffuser shaped moving actuators on the sidewalls is considered for numerical study. These actuators are used to create pressure difference in the four pump chambers, which in turn drives the fluid through the pump in one direction. Genetic algorithms along with artificial neural networks are used for optimizing the pump geometry and the actuation frequency. A simple example with moving walls is considered for validation by developing an exact analytical solution of Navier–Stokes equation and comparing it with numerical simulations. Possible applications of these pumps are in microelectronics cooling and drug delivery. Based on the results obtained from the fluid–structure interaction analysis, three optimized geometries result in flow rates which match the predicted flow rates with 95% accuracy. These geometries need further investigation for fabrication and manufacturing issues.
79

Heat transfer and flow characteristics of sonic nozzle

Madamadakala, Ganapathi Reddy January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Steven Eckels / The current research presents the experimental investigation of heat transfer and flow characteristics of sonic multiphase flow in a converging-diverging nozzle. R134a and R123 are used in this study. Four different nozzle assemblies with two different throat sizes (2.43mm and 1.5 mm with 1° growth angle with the centerline of the nozzle in the diverging section) and two different heater lengths (200 mm and 125 mm) were tested. Each test section was an assembly of aluminum nozzle sections. The experimental facility design allowed controlling three variables: throat velocity, inlet temperature, back pressure saturation temperature. The analysis used to find the average heat transfer of the fluid to each nozzle section. This was achieved by measuring the nozzle wall temperature and fluid pressure in a steady state condition. Two methods for finding the average heat flux in sonic nozzle were included in the data analysis: infinite contact resistance and zero contact resistance between nozzle sections. The input variables ranges were 25 °C and 30 °C for inlet temperature and back pressure saturation temperatures, 1100-60,000 kg/m[superscript]2s for mass flux, and 1.4-700 kW/m[superscript]2 heat flux. The effect of the mass flux and heat flux on the average two-phase heat transfer coefficients was investigated. The flow quality, Mach number(M), and Nusselt number ratio ([phi]) were also calculated for each section of the nozzle. As the fluid flowed through the nozzle, the pressure of the liquid dropped below the inlet saturation pressure of the liquid due to sonic expansion in the nozzle. This temperature drop was significantly lower in the case of R134a than R123. The results showed that the two-phase heat transfer coefficients were above of 30000 W/m^2 K in the first 75 mm of the nozzle, and they decreased along the nozzle. The Mach number profile appeared similar to the temperature profile, and the fluid was in the sonic region as long as temperature of the fluid dropped in the nozzle. Nusselt number ratios were compared with the Mach numbers and showed that the Nusselt number ratio were increased in the sonic region. The results showed that the length of the sonic region was larger for R123 than for R134a, and the Mach numbers were higher for R123. The Nusselt ratios of R123 were low compared to the R134a cases, and the trend in the Nusselt ratios was notably different as well.
80

A Study on Particle Motion and Deposition Rate : Application in Steel Flows

Ni, Peiyuan January 2015 (has links)
Non-metallic inclusions in molten steel have received worldwide attention due to their serious influence on both the steel product quality and the steel production process. These inclusions may come from the de-oxidation process, the re-oxidation by air and/or slag due to an entrainment during steel transfer, and so on. The presence of some inclusion types can cause a termination of a casting process by clogging a nozzle. Thus, a good knowledge of the inclusion behavior and deposition rate in steel flows is really important to understand phenomena such as nozzle clogging. In this thesis, inclusion behaviors and deposition rates in steel flows were investigated by using mathematical simulations and validation by experiments. A ladle teeming process was simulated and Ce2O3 inclusion behavior during a teeming stage was studied. A Lagrangian method was used to track the inclusions in a steel flow and to compare the behaviors of inclusions of different sizes. In addition, a statistical analysis was conducted by the use of a stochastic turbulence model to investigate the behaviors of different-sized inclusions in different nozzle regions. The results show that inclusions with a diameter smaller than 20 μm were found to have similar trajectories and velocity distributions in the nozzle. The inertia force and buoyancy force were found to play an important role for the behavior of large-size inclusions or clusters. The statistical analysis results indicate that the region close to the connection region of the straight pipe and the expanding part of the nozzle seems to be very sensitive for an inclusion deposition. In order to know the deposition rate of non-metallic inclusions, an improved Eulerian particle deposition model was developed and subsequently used to predict the deposition rate of inclusions. It accounts for the differences in properties between air and liquid metals and considers Brownian and turbulent diffusion, turbophoresis and thermophoresis as transport mechanisms. A CFD model was firstly built up to obtain the friction velocity caused by a fluid flow. Then, the friction velocity was put into the deposition model to calculate the deposition rate. For  the  case  of  inclusion/particle  deposition  in  vertical  steel  flows,  effects  on  the deposition rate of parameters such as steel flow rate, particle diameter, particle density, wall roughness and temperature gradient near a wall were investigated. The results show that the steel flow rate/friction velocity has a very important influence on the rate of the deposition of large particles, for which turbophoresis is the main deposition mechanism. For small particles, both the wall roughness and thermophoresis have a significant influence on the particle deposition rate. The extended Eulerian model was thereafter used to predict the inclusion deposition rate in a submerged entry nozzle (SEN). Deposition rates of different-size inclusions in the SEN were obtained. The result shows that the steel flow is non-uniform in the SEN of the tundish. This leads to an uneven distribution of the inclusion deposition rates at different locations of the inner wall of the SEN. A large deposition rate was found to occur at the regions near the SEN inlet, the SEN bottom and the upper region of two SEN ports. For the case of an inclusion/particle deposition in horizontal straight channel flows, the deposition rates of particles at different locations of a horizontal straight pipe cross- section were found to be different due to the influence of gravity and buoyancy. For small particles with a small particle relaxation time, the gravity separation is important for their deposition  behaviors  at  high  and  low  parts  of  the  horizontal  pipe  compared  to  the turbophoresis. For large particles with a large particle relaxation time, turbophoresis is the dominating deposition mechanism. / <p>QC 20150326</p>

Page generated in 0.0492 seconds