• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Market for Nuclear Desalination Systems in China and India

郭馬定, Groch, Martin Unknown Date (has links)
Growth of population, affluence, industrialization and urbanization drive both the demand for fresh water and the demand for electric energy upwards. China and India with their large and growing populations and quick industrialization are markets with large unmet demand for electric energy and fresh water. Literature often suggests that fresh water crisis is a major threat to sustainable development in 21st century. Nuclear desalination systems are power plants based on small nuclear power generating units connected to a desalination unit. Nuclear desalination systems are capable of cogenerating electricity and fresh water at low cost. This paper identifies market opportunities for nuclear desalination systems and forecasts the demand for nuclear desalination systems in China and India from 2008 to 2030.
2

Design guidelines for a reverse osmosis desalination plant / Anton Michael Hoffman

Hoffman, Anton Michael January 2008 (has links)
There are two basic needs globally and that is the control and supply of reliable electricity and clean water. However, one of the biggest challenges the world is facing today is the lack of fresh water resources. Lower rainfall, together with population and industry growth, are only a few factors contributing to the fast increasing strain on existing water supplies around the world. This fast increasing need therefore necessitates the investigation into finding alternative sources. One such option is that of desalination. In the last 50 years desalination technologies have been applied to produce high quality fresh water from brackish and seawater resources. In the 1980's a breakthrough was made with the introduction of the membrane desalination technology, known as the reverse osmosis (RO) process. Today newly developed technologies are improving the competitiveness of the reverse osmosis process against the traditional distillation processes. There are a number of options to increase the efficiency of a reverse osmosis plant and one option is to use warm industrial waste water as the feed water to the desalination plant. It is known that the viscosity of water is inversely proportional to its temperature. Therefore, if the feed water temperature of a reverse osmosis plant is increased the membranes will become more permeable. This will result in a higher production volume or in a lower energy demand. South Africa is on the edge of building the first fourth generation nuclear power plant, called the Pebble Bed Modular Reactor (PBMR) at Koeberg. The PBMR will produce a cooling water outlet temperature of 40°C which can be used as feed water to a reverse osmosis plant. In this study design guidelines of a reverse osmosis plant are given in nine steps. These steps were then used during a basic component design of a reverse osmosis plant coupled to the waste water stream of a PBMR nuclear power plant. Furthermore design software programs were used to simulate the coupling scheme in order to validate the outcome of the design guidelines. The results of the two design approaches compared well to one another. It furthermore showed that by using the waste water from the PBMR nuclear power plant the efficiency of the RO plant is increased and the operating cost is decreased. Fresh water can be produced at a cost of R 5.64/m3 with a specific electricity consumption of 2.53 kWh/m3. / Thesis (M.Ing. (Nuclear Engineering)--North-West University, Potchefstroom Campus, 2009.
3

Design guidelines for a reverse osmosis desalination plant / Anton Michael Hoffman

Hoffman, Anton Michael January 2008 (has links)
There are two basic needs globally and that is the control and supply of reliable electricity and clean water. However, one of the biggest challenges the world is facing today is the lack of fresh water resources. Lower rainfall, together with population and industry growth, are only a few factors contributing to the fast increasing strain on existing water supplies around the world. This fast increasing need therefore necessitates the investigation into finding alternative sources. One such option is that of desalination. In the last 50 years desalination technologies have been applied to produce high quality fresh water from brackish and seawater resources. In the 1980's a breakthrough was made with the introduction of the membrane desalination technology, known as the reverse osmosis (RO) process. Today newly developed technologies are improving the competitiveness of the reverse osmosis process against the traditional distillation processes. There are a number of options to increase the efficiency of a reverse osmosis plant and one option is to use warm industrial waste water as the feed water to the desalination plant. It is known that the viscosity of water is inversely proportional to its temperature. Therefore, if the feed water temperature of a reverse osmosis plant is increased the membranes will become more permeable. This will result in a higher production volume or in a lower energy demand. South Africa is on the edge of building the first fourth generation nuclear power plant, called the Pebble Bed Modular Reactor (PBMR) at Koeberg. The PBMR will produce a cooling water outlet temperature of 40°C which can be used as feed water to a reverse osmosis plant. In this study design guidelines of a reverse osmosis plant are given in nine steps. These steps were then used during a basic component design of a reverse osmosis plant coupled to the waste water stream of a PBMR nuclear power plant. Furthermore design software programs were used to simulate the coupling scheme in order to validate the outcome of the design guidelines. The results of the two design approaches compared well to one another. It furthermore showed that by using the waste water from the PBMR nuclear power plant the efficiency of the RO plant is increased and the operating cost is decreased. Fresh water can be produced at a cost of R 5.64/m3 with a specific electricity consumption of 2.53 kWh/m3. / Thesis (M.Ing. (Nuclear Engineering)--North-West University, Potchefstroom Campus, 2009.
4

Dynamic Modeling, Sensor Placement Design, and Fault Diagnosis of Nuclear Desalination Systems

Li, Fan 01 May 2011 (has links)
Fault diagnosis of sensors, devices, and equipment is an important topic in the nuclear industry for effective and continuous operation of nuclear power plants. All the fault diagnostic approaches depend critically on the sensors that measure important process variables. Whenever a process encounters a fault, the effect of the fault is propagated to some or all the process variables. The ability of the sensor network to detect and isolate failure modes and anomalous conditions is crucial for the effectiveness of a fault detection and isolation (FDI) system. However, the emphasis of most fault diagnostic approaches found in the literature is primarily on the procedures for performing FDI using a given set of sensors. Little attention has been given to actual sensor allocation for achieving the efficient FDI performance. This dissertation presents a graph-based approach that serves as a solution for the optimization of sensor placement to ensure the observability of faults, as well as the fault resolution to a maximum possible extent. This would potentially facilitate an automated sensor allocation procedure. Principal component analysis (PCA), a multivariate data-driven technique, is used to capture the relationships in the data, and to fit a hyper-plane to the data. The fault directions for different fault scenarios are obtained from the prediction errors, and fault isolation is then accomplished using new projections on these fault directions. The effectiveness of the use of an optimal sensor set versus a reduced set for fault detection and isolation is demonstrated using this technique. Among a variety of desalination technologies, the multi-stage flash (MSF) processes contribute substantially to the desalinating capacity in the world. In this dissertation, both steady-state and dynamic simulation models of a MSF desalination plant are developed. The dynamic MSF model is coupled with a previously developed International Reactor Innovative and Secure (IRIS) model in the SIMULINK environment. The developed sensor placement design and fault diagnostic methods are illustrated with application to the coupled nuclear desalination system. The results demonstrate the effectiveness of the newly developed integrated approach to performance monitoring and fault diagnosis with optimized sensor placement for large industrial systems.
5

Analysis Of Two Phase Natural Circulation System Under Oscillatory Conditions

Jayakumar, J.S 06 1900 (has links) (PDF)
No description available.

Page generated in 0.2299 seconds