• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 30
  • 7
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 115
  • 115
  • 59
  • 59
  • 26
  • 26
  • 23
  • 21
  • 21
  • 19
  • 16
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The effect of exercise and caloric restriction on cardiac NF-kB signaling and inflammation in Otsuka Long-Evans Tokushima Fatty (OLETF) rats

Baez, Angel E 23 November 2015 (has links)
Introduction: Cardiometabolic syndrome is considered a chronic low-grade inflammatory condition that affects various organs and tissues. Individuals with type 2 diabetes mellitus (T2DM) and obesity are at an increased risk for developing the cardiometabolic syndrome and have greater rates of cardiovascular disease (CVD). These conditions are also associated with increased systemic and local inflammation and greater expression of pro-inflammatory markers such as monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor-α (TNF-α), and interleukin 1β (IL-1β) in many tissues. The heart is adversely affected by the inflammation and metabolic changes induced by diabetes and obesity. Nuclear transcription factor kappa B (NF-κB) activity is known to be related to inflammation and cytokine production. However, there is limited information on whether NF-κB signaling and inflammation play a role in early cardiac pathogenesis related to obesity and diabetes and whether lifestyle changes known to prevent or treat these diseases are effective in the heart. Purpose: Therefore, the purpose of this study was to compare the effect of exercise (EX) and caloric restriction (CR) to alter NF-κB signaling, inflammation, and markers of cardiac dysfunction in the heart of 20-week old Otsuka Long Evans Tokushima (OLETF) rats. Methods: Hearts of male 20 week old OLETF rats from a previous study (Crissey et al., 2014) were collected for gene expression (RT-PCR), NF-κB activity, and markers of inflammation and immune cell infiltration. Results: There were no significant differences detected in markers of cardiac dysfunction including, α-MHC, β-MHC, ANP, BNP, COL1, COL3 (all p>0.05). Second, 1-way ANOVA showed that there was trend for an overall effect of group (p=0.07) on NF-κB activation where CR tended to be greater compared to SED and WR (p=0.06). Finally, there were no significant differences between groups in inflammatory and immune cell markers; CD4, F4/80, CD68, IL-1β, MCP-1, TGFB1, and TNF-α (all p>0.05). Conclusion: This study shows that at 20 weeks, a time when OLETF animals exhibit characteristics of the metabolic syndrome such as hypertension, mild obesity, and increased insulin resistance, EX and CR do not reduce markers of cardiac dysfunction and inflammation, potentially because inflammation does not influence the heart at this early time period in the development of the disease. Further, the trend of greater NF-κB activity in CR compared to EX and SED, needs further exploration.
32

Productive and Penicillin-Stressed Chlamydia Pecorum Infection Induces Nuclear Factor Kappa B Activation and Interleukin-6 Secretion in Vitro

Leonard, Cory A., Schoborg, Robert V., Borel, Nicole 11 May 2017 (has links)
Nuclear factor kappa B (NFκB) is an inflammatory transcription factor that plays an important role in the host immune response to infection. The potential for chlamydiae to activate NFκB has been an area of interest, however most work has focused on chlamydiae impacting human health. Given that inflammation characteristic of chlamydial infection may be associated with severe disease outcomes or contribute to poor overall fitness in farmed animals, we evaluated the ability of porcine chlamydiae to induce NFκB activation in vitro. C. pecorum infection induced both NFκB nuclear translocation and activation at 2 hours post infection (hpi), an effect strongly enhanced by suppression of host de novo protein synthesis. C. suis and C. trachomatis showed less capacity for NFκB activation compared to C. pecorum, suggesting a species-specific variation in NFκB activation. At 24 hpi, C. pecorum induced significant NFκB activation, an effect not abolished by penicillin (beta lactam)-induced chlamydial stress. C. pecorum-dependent secretion of interleukin 6 was also detected in the culture supernatant of infected cells at 24 hpi, and this effect, too, was unchanged by penicillin-induced chlamydial stress. Taken together, these results suggest that NFκB participates in the early inflammatory response to C. pecorum and that stressed chlamydiae can promote inflammation.
33

Early Activation of Transcription Factor NF-κB During Ischemia in Perfused Rat Heart

Li, Chuanfu, Browder, William, Kao, Race L. 01 January 1999 (has links)
The transcription factor nuclear factor κB (NF-κB) regulates multiple immediate-early gene expressions involved in immune and inflammatory responses and cellular defenses. Ischemia-reperfusion induces many immediate- early gene expressions, but little is known about the NF-κB activation in myocardium during ischemia and reperfusion. This study demonstrated that ischemia alone rapidly induced NF-κB activation in the myocardium of isolated working rat hearts. Electrophoretic mobility shift assay showed that NF-κB binding activity significantly increased in the nucleus after 5 min of ischemia and remained elevated for up to 30 min. Western blot analysis suggested that the levels of inhibitory IκBα protein in the cytoplasm became markedly decreased at 4, 5, 7.5, and 10 min of ischemia but were gradually restored following 10 min of ischemia. Reduction of IκBα protein in the cytoplasm by ischemia resulted in NF-κB translocation to the nucleus. Northern blot hybridization showed that IκBα mRNA levels were not significantly elevated during myocardial ischemia. Pyrrolidine dithiocarbamate, an antioxidant, significantly inhibited the loss of IκBα protein from the cytoplasm and prevented NF-κB binding activity in the nucleus. Reperfusion following short periods of ischemia augmented NF-κB binding activity in the nucleus induced by ischemia. The results suggest that early activation of NF-κB induced by ischemia in the myocardium could be a signal mechanism for controlling and regulating immediate-early gene expression during ischemia-reperfusion.
34

Overexpression of Angiopoietin-1 Reduces Doxorubicin-Induced Apoptosis in Cardiomyocytes

Ren, Danyang, Zhu, Quan, Li, Jiantao, Ha, Tuanzhu, Wang, Xiaohui, Li, Yuehua 01 November 2012 (has links)
Doxorubicin (Dox) is a major anticancer chemotherapeutic agent. However, it causes cardiomyopathy due to the side effect of cardiomyocyte apoptosis. We have previously reported that angiopoietin-1 significantly reduced myocardial infarction after ischemic injury and protected cardiomyocytes from oxidative stress-induced apoptosis. It is hypothesized that angiopoietin-1 may protect cardiomyocytes from Dox-induced apoptosis. Cardiomyocytes H9C2 were transfected with adenovirus expressing angiopoietin-1 (Ad5-Ang-1) 24 h before the cells were challenged with Dox at a concentration of 2 μmol/L. Ad5-GFP served as the vector control. Cardiomyocyte apoptosis was evaluated using Annexin V-FITC staining and caspase-3 and caspase-8 activity was determined by Western blotting. The results showed that Dox treatment significantly induced cardiomyocyte apoptosis as evidenced by the greater number of Annexin V-FITC stained cells and increases in caspase-3 and caspase-8 activity. In contrast, overexpression of angiopoietin-1 significantly prevented Dox-induced cardiomyocyte apoptosis. To elucidate the mechanisms by which angiopoietin-1 protected cells from Dox-induced apoptosis, we analyzed both extrinsic and intrinsic apoptotic signaling pathways. We observed that angiopoietin-1 prevented Dox-induced activation of both extrinsic and intrinsic apoptotic signaling pathways. Specifically, angiopoietin-1 prevented DOX-induced in-creases in FasL and Bax levels and cleaved caspase-3 and caspase-8 levels in H9C2 cells. In addition, overexpression of angiopoietin-1 also activated the pro-survival phosphoinositide-3 kinase (PI3K)/Akt signaling pathway and decreased Dox-induced nuclear factor-kappaB (NF-κB) activation. Our data suggest that promoting the expression of angiopoietin-1 could be a potential approach for reducing Dox-induced cardiomyocyte cytoxicity.
35

Blockade of myd88 Attenuates Cardiac Hypertrophy and Decreases Cardiac Myocyte Apoptosis in Pressure Overload-Induced Cardiac Hypertrophy in Vivo

Ha, Tuanzhu, Hua, Fang, Li, Yuehua, Ma, Jing, Gao, Xiang, Kelley, Jim, Zhao, Aiqiu, Haddad, Georges E., Williams, David L., Browder, I. William, Kao, Race L., Li, Chuanfu 01 March 2006 (has links)
In this study, we evaluated whether blocking myeloid differentiation factor-88 (MyD88) could decrease cardiac myocyte apoptosis following pressure overload. Adenovirus expressing dominant negative MyD88 (Ad5-dnMyD88) or Ad5-green fluorescent protein (GFP) (Ad5-GFP) was transfected into rat hearts (n = 8/group) immediately followed by aortic banding for 3 wk. One group of rats (n = 8) was subjected to aortic banding for 3 wk without transfection. Sham surgical operation (n = 8) served as control. The ratios of heart weight to body weight (HW/BW) and heart weight to tibia length (HW/TL) were calculated. Cardiomyocyte size was examined by FITC-labeled wheat germ agglutinin staining of membranes. Cardiac myocyte apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, and myocardial interstitial fibrosis was examined by Masson's Trichrome staining. Aortic banding significantly increased the HW/BW by 41.0% (0.44 ± 0.013 vs. 0.31 ± 0.008), HW/TL by 47.2% (42.7 ± 1.30 vs. 29.0 ± 0.69), cardiac myocyte size by 49.6%, and cardiac myocyte apoptosis by 11.5%, and myocardial fibrosis and decreased cardiac function compared with sham controls. Transfection of Ad5-dnMyD88 significantly reduced the HW/BW by 18.2% (0.36 ± 0.006 vs. 0.44 ± 0.013) and HW/TL by 22.3% (33.2 ± 0.95 vs. 42.7 ± 1.30) and decreased cardiomyocyte size by 56.8%, cardiac myocyte apoptosis by 76.2%, as well as fibrosis, and improved cardiac function compared with aortic-banded group. Our results suggest that MyD88 is an important component in the Toll-like receptor-4-mediated nuclear factor-κB activation pathway that contributes to the development of cardiac hypertrophy. Blockade of MyD88 significantly reduced cardiac hypertrophy, cardiac myocyte apoptosis, and improved cardiac function in vivo.
36

Reduced Cardiac Hypertrophy in Toll-Like Receptor 4-Deficient Mice Following Pressure Overload

Ha, Tuanzhu, Li, Yuehua, Hua, Fang, Ma, Jinag, Gao, Xiang, Kelley, Jim, Zhao, Aiqiu, Haddad, Georges E., Williams, David L., Browder, I. William, Kao, Race L., Li, Chuanfu 01 November 2005 (has links)
Objective: We have previously demonstrated that nuclear factor kappa B (NFκB) activation is needed for the development of cardiac hypertrophy in vivo. NFκB is a downstream transcription factor in the Toll-like receptor (TLR)-mediated signaling pathway; therefore, we investigated a role of TLR4 in cardiac hypertrophy in vivo. Methods: TLR4-deficient mice (C.C3H-Tlr4 lps-d, n = 6), wild-type (WT) genetic background mice (BALB/c, n = 6), TLR4-deleted strain (C57BL/10ScCr, n = 8), and WT controls (C57BL/10ScSn, n = 8) were subjected to aortic banding for 2 weeks. Age-matched surgically operated mice served as controls. In a separate experiment, rapamycin (2 mg/kg, daily) was administered to TLR4-deficient mice and WT mice immediately following aortic banding. The ratio of heart weight/body weight (HW / BW) was calculated, and cardiac myocyte size was examined by FITC-labeled wheat germ agglutinin staining of membranes. NFκB binding activity and the levels of phospho-p70S6K in the myocardium were also examined. Results: Aortic banding significantly increased the ratio of HW / BW by 33.9% (0.601 ± 0.026 vs. 0.449 ± 0.004) and cell size by 68.4% in WT mice and by 10.00% (0.543 ± 0.011 vs. 0.495 ± 0.005) and by 11.8% in TLR4-deficient mice, respectively, compared with respective sham controls. NFκB binding activity and phospho-p70S6K levels were increased by 182.6% and 115.2% in aortic-banded WT mice and by 78.0% and 162.0% in aortic-banded TLR4-deficient mice compared with respective sham controls. In rapamycin-treated aortic-banded mice, the ratio of HW / BW was increased by 18.0% in WT mice and by 3.5% in TLR4-deficient mice compared with respective sham controls. Conclusion: Our results demonstrate that TLR4 is a novel receptor contributing to the development of cardiac hypertrophy in vivo and that both the TLR4-mediated pathway and PI3K/Akt/mTOR signaling are involved in the development of cardiac hypertrophy in vivo.
37

Blocking the MyD88-Dependent Pathway Protects the Myocardium From Ischemia/Reperfusion Injury in Rat Hearts

Hua, Fang, Ha, Tuanzhu, Ma, Jing, Gao, Xiang, Kelley, Jim, Williams, David L., Browder, I. William, Kao, Race L., Li, Chuanfu 16 December 2005 (has links)
We examined whether blocking the MyD88 mediated pathway could protect myocardium from ischemia/reperfusion (I/R) injury by transfecting Ad5-dnMyD88 into the myocardium of rats (n = 8) 3 days before the hearts were subjected to ischemia (45 min) and reperfusion (4 h). Ad5-GFP served as control (n = 8). One group of rats was (n = 8) subjected to I/R without transfection. Transfection of Ad5-dnMyD88 significantly reduced infarct size by 53.6% compared with the I/R group (15.1 ± 3.02 vs 32.5 ± 2.59) while transfection of Ad5-GFP did not affect I/R induced myocardial injury (35.4 ± 2.59 vs 32.5 ± 2.59). Transfection of Ad5-dnMyD88 significantly inhibited I/R-enhanced NFκB activity by 50% and increased the levels of phospho-Akt by 35.6% and BCL-2 by 81%, respectively. Cardiac myocyte apoptosis after I/R was significantly reduced by 59% in the Ad5-dnMyD88 group. The results demonstrate that both inhibition of the NFκB activation pathway and activation of the Akt signaling pathway may be responsible for the protective effect of transfection of dominant negative MyD88.
38

Hormonal regulation of cutaneous wound healing: effect of androstenediol on stress impaired wound healing

Head, Cynthia C. 30 August 2007 (has links)
No description available.
39

Inhibition of Heat Shock Protein 90 Reduces Inflammatory Signal Transduction in Murine J774 Macrophage Cells and Lessens Disease in Autoimmune MRL/lpr Mice: What in vitro, in vivo, and in silico Models Reveal

Shimp, Samuel Kline 30 May 2012 (has links)
Heat shock protein 90 (HSP90) is a molecular chaperone protein that protects proteins from degradation, repairs damaged proteins, and assists proteins in carrying out their functions. HSP90 has hundreds of clients, many of which are inflammatory signaling kinases. The mechanism by which HSP90 enables inflammatory pathways is an active area of investigation. The HSP90 inhibitors such as geldanamycin (GA) and its derivative 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) have been shown to reduce inflammation. It was hypothesized that inhibiting HSP90 would reduce inflammatory signal cascade levels. To test this, J774 mouse macrophage cells were treated with 17-DMAG and immune-stimulated with lipopolysaccharide (LPS). 17-DMAG treatment reduced nitric oxide (NO) production and the expression of pro-inflammatory cytokines interleukin (IL)-6, IL-12, and TNF-α. Inhibition of HSP90 also prevented nuclear translocation of NF-κB. To investigate the anti-inflammatory effects of HSP90 inhibition in vivo, MRL/lpr lupus mice were administered 5 mg/kg 17-DMAG for six weeks via intraperitoneal injection. Mice treated with 17-DMAG were found to have reduced proteinuria and reduced splenomegaly. Flow cytometric analysis of splenocytes showed that 17-DMAG decreased double negative T (DNT) cells. Renal expression of HSP90 was also measured and found to be increased in MRL/lpr mice that did not receive 17-DMAG. The mechanistic interactions between HSP90 and the pro-inflammatory nuclear factor-κB (NF-κB) pathway were studied and a computational model was developed. The model predicts cellular response of inhibitor of κB kinase (IKK) activation and NF-κB activation to LPS stimulation. Model parameters were fit to IKK activation data. Parameter sensitivity was assessed through simulation studies and showed a strong dependence on IKK-HSP90 binding. The model also accounts for the effect of a general HSP90 inhibitor to disrupt the IKK-HSP90 interaction for reduced activation of NF-κB. Model simulations were validated with experimental data. In conclusion, HSP90 facilitates inflammation through multiple signal pathways including Akt and IKK. Inhibition of HSP90 by 17-DMAG reduced disease in the MRL/lpr lupus mouse model. A computational model supported the hypothesis that HSP90 is required for IKK to activate the NF-κB pathway. Taken together, HSP90 is a prime target for therapeutic regulation of many inflammatory processes and warrants further study to understand its mechanism of regulating cell signaling cascades. / Ph. D.
40

Transcriptional regulation of the hepatic cytochrome <em>P450 2a5</em> gene

Arpiainen, S. (Satu) 25 September 2007 (has links)
Abstract Cytochrome P450 (CYP) enzymes are the major metabolizers of xenobiotics, e.g. drugs, and environmental toxins. Thus, changes in CYP expression have an important impact on drug metabolism and susceptibility to chemical toxicity. In the present study, the transcriptional mechanisms of both constitutive and inducible regulation of the Cyp2a5 gene in mouse liver were investigated. Mouse primary hepatocyte cultures were used as the main model system together with cell and molecular biology methods. The key activation regions of the Cyp2a5 5' promoter were determined using reporter gene assays. Two major transcription activation sites of the Cyp2a5 5' promoter, called the proximal and the distal, were found. Transcription factors hepatocyte nuclear factor-4 (HNF-4) and nuclear factor I were shown to bind to the proximal promoter. Aryl hydrocarbon receptor nuclear translocator (ARNT) and upstream stimulatory factor bound to a common palindromic E-box element in the distal promoter region. All three response elements were shown to be essential for constitutive expression of CYP2A5 in murine hepatocytes. ARNT appeared to control Cyp2a5 transcription without a heterodimerization partner suggesting active involvement of the ARNT homodimer in mammalian gene regulation. Aryl hydrocarbon receptor (AHR) ligands were shown to induce Cyp2a5 transcriptionally by an AHR-dependent mechanism, and established Cyp2a5 as a novel AHR-regulated gene. The AHR response element and the E-box, identified in these studies, were located near to each other and close to a separately defined nuclear factor (erythroid-derived 2)-like 2 binding site in the distal region of the Cyp2a5 promoter, suggesting cooperation between these elements. Peroxisome proliferator-activated receptor gamma coactivator-1α was shown to up-regulate Cyp2a5 transcription through coactivation of HNF-4α. This indicates that xenobiotic metabolism can be regulated by modification of co-activation. The present results show that CYP2A5 is regulated by several different cross-regulatory pathways. The regulatory mechanisms involved in the transcription of the Cyp2a5 gene may also control other CYP genes, especially the human ortholog CYP2A6, and may explain some of the individual variations in the metabolism of xenobiotics.

Page generated in 0.0462 seconds