• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Nucleocytoplasmic Shuttling Functions of P68 in Cancer Cell Migration and Proliferation

Wang, Haizhen 10 August 2011 (has links)
P68 RNA helicase (p68), as a DEAD family protein, is a typical RNA helicase protein. P68 functions in many other biological processes, which include the regulations of the gene transcription, cell proliferation and cell differentiation. In our group, Y593 phosphorylated p68 was found to have a function in the epithelial mesynchymal transition, which is an important process for cancer metastasis. In the present study, we found that p68 is a nucleocytoplasmic shuttling protein. The protein carries two functional nuclear exporting signal sequences and two nuclear localization signal sequences. Calmodulin, a calcium sensor protein, is well known to play roles in cell migration by regulating the activities of its target proteins at the leading edge. Calmodulin interacts with p68 at the IQ motif of p68. However, the biological function of this interaction is not known. In this study, we found that the p68/calmodulin protein complex functions as a microtubule motor in migrating cells. The shuttling function of p68 along with the motor function of p68/calmodulin causes the leading edge distribution of calmodulin in migrating cells. Disruption the interaction between p68 and calmodulin inhibits cancer cell metastasis in an established mouse model. On the other hand, Y593-Y595 double phosphorylated p68 were found to interact with PKM2, an important tumor isoform of pyruvate kinase. The shuttling function of p68 is reasoned to promote the dimer formation of PKM2 and transport the PKM2 to the cell nucleus. The nuclear PKM2 was found to function as a protein kinase to promote cell proliferation. In specific, the nuclear PKM2 phosphorylates and activates Stat3, an important transcription factor functions in cell proliferation. Overall, p68 is found to have functions in both cell migration and cell proliferation, and these two functions depend on the nucleocytoplasmic shuttling activity and the post-translational modification of p68.
2

Investigation of the Prader-Willi syndrome protein MAGEL2 in the regulation of Forkhead box transcription factor FOXO1

Devos, Julia J Unknown Date
No description available.
3

Characterization of zebrafish zipper-interacting protein kinase

Carr, Brandon W. 01 January 2014 (has links)
Zipper-Interacting Protein Kinase (ZIPK) is a known modulator of actin-myosin contractility in vertebrate species. Interestingly, rodent and mouse ZIPK has undergone a divergence in regulation in comparison to other vertebrate orthologs including human. Whereas the human ortholog of ZIPK requires phosphorylation of residues TT299/300 for nuclear exit, rodents and mouse require interaction with another protein termed PAR-4. In this project we completed several experiments to examine zebrafish ZIPK in development and its effect on acto-myosin contractility. It was found that zebrafish ZIPK was expressed ubiquitously in maternal stages. In zygotic stages, ZIPK expression dropped dramatically and localized to the anterior portions of the embryo. Zebrafish and human ZIPK, but not rodent ZIPK were able to increase stress fiber formation and myosin light chain-2 (MLC-2) phosphorylation in vitro. Human and zebrafish ZIPK underwent nucleocytoplasmic shuttling without PAR-4 interaction, unlike rodent ZIPK, which required PAR-4 for nuclear exit. Unlike human ZIPK, zebrafish ZIPK TT299/300AA mutants were able to undergo shuttling. Similar to human ZIPK, catalytic mutations to zebrafish ZIPK abolished or dramatically reduced activity. Through these experiments we were able to show human and zebrafish ZIPK homologs function and are regulated similarly, while the rodent ZIPK was much more unique. Although the exhibited phenotypes were similar between human and zebrafish ZIPK orthologs, the mechanism of regulation is not completely conserved.
4

HOST RESTRICTION FACTORS IN THE REPLICATION OF TOMBUSVIRUSES: FROM RNA HELICASES TO NUCLEOCYTOPLASMIC SHUTTLING

Wu, Cheng-Yu 01 January 2019 (has links)
Positive-stranded (+)RNA viruses replicate inside cells and depend on many cellular factors to complete their infection cycle. In the meanwhile, (+)RNA viruses face the host innate immunity, such as cell-intrinsic restriction factors that could block virus replication. Firstly, I have established that the plant DDX17-like RH30 DEAD-box helicase conducts strong inhibitory function on tombusvirus replication when expressed in plants and yeast surrogate host. This study demonstrates that RH30 blocks the assembly of viral replicase complex, the activation of RNA-dependent RNA polymerase function of p92pol and viral RNA template recruitment. In addition, the features rendering the abundant plant DEAD-box helicases either antiviral or pro-viral functions in tombusvirus replication are intriguing. I found the reversion of the antiviral function of DDX17-like RH30 DEAD-box helicase and the coopted pro-viral DDX3-like RH20 helicase due to deletion of unique N-terminal domains. The discovery of the sequence plasticity of DEAD-box helicases that can alter recognition of different cis-acting elements in the viral genome illustrates the evolutionary potential of RNA helicases in the arms race between viruses and their hosts. Moreover, I discovered that Xpo1 possesses an anti-viral function and exports previously characterized cell-intrinsic restriction factors (CIRFs) from the nucleus to the replication compartment of tombusviruses. Altogether, in my PhD studies, I found plant RH30 DEAD-box helicase is a potent host restriction factor inhibiting multiple steps of the tombusvirus replication. In addition, I provided the evidence supporting that the Nterminal domain determines the functions of antiviral DDX17-like RH30 DEAD-box helicase and pro-viral DDX3-like RH20 DEAD-box helicase in tombusvirus replication. Moreover, I discovered the emerging significance of the Xpo1-dependent nuclear export pathway in tombusvirus replication.
5

The Multifunctional HnRNP A1 Protein in the Regulation of the <i>Cyp2a5</i> Gene : Connecting Transcriptional and Posttranscriptional Processes

Glisovic, Tina January 2003 (has links)
<p>The mouse xenobiotic-inducible <i>Cyp2a5</i> gene is both transcriptionally and posttranscriptionally regulated. One of the most potent <i>Cyp2a5</i> inducers, the hepatotoxin pyrazole, increases the CYP2A5 mRNA half-life. The induction is accomplished through the interaction of a pyrazole-inducible protein with a 71 nt long, putative hairpin-loop region in the 3' UTR of the CYP2A5 mRNA.</p><p>The aims of this thesis have been to identify the pyrazole-inducible protein, to investigate its role in the <i>Cyp2a5</i> expression and the significance of the 71 nt hairpin-loop region for the <i>Cyp2a5</i> expression, and to examine a possible coupling between transcriptional and posttranscriptional processes in <i>Cyp2a5</i> expression.</p><p>The pyrazole-inducible protein was identified as the heterogeneous nuclear ribonucleoprotein (hnRNP) A1. Studies performed in mouse primary hepatocytes overexpressing hnRNP A1, and in mouse erythroleukemia derived cells lacking hnRNP A1, revealed that the 71 nt region in the 3' UTR of the CYP2A5 mRNA is essential for <i>Cyp2a5</i> expression.</p><p>The hnRNP A1 is a multifunctional nucleocytoplasmic shuttling protein, with the ability to bind both RNA and DNA. These properties make it an interesting candidate mediating a coupling between nuclear and cytoplasmic gene regulatory events, which was investigated for the <i>Cyp2a5</i>. In conditions of cellular stress hnRNP A1 translocates from the nucleus to the cytoplasm. The accumulation of cytoplasmic hnRNP A1 after RNA polymerase II transcription inhibition, resulted in an increased binding of hnRNP A1 to the CYP2A5 mRNA, parallel with a stabilization of the CYP2A5 mRNA.</p><p>Treating primary mouse hepatocytes with phenobarbital (PB), a <i>Cyp2a5</i> transcriptional inducer, resulted in a mainly nuclear localization of the hnRNP A1. Electrophoretic mobility shift assays with nuclear extracts from control or PB-treated mice, revealed that hnRNP A1 interacts with two regions in the <i>Cyp2a5</i> proximal promoter, and that the interaction to one of the regions was stimulated by PB treatment.</p><p>In conclusion, the change in hnRNP A1 subcellular localization after transcriptional inhibition or activation, together with the effects on the interaction of hnRNP A1 with the CYP2A5 mRNA and <i>Cyp2a5</i> promoter, suggest that hnRNP A1 could couple the nuclear and cytoplasmic events of the <i>Cyp2a5</i> expression.</p><p>The presented studies are the first showing involvement of an hnRNP protein in the regulation of a <i>Cyp</i> gene. Moreover, it is the first time an interconnected transcriptional and posttranscriptional regulation has been suggested for a member of the <i>Cyp</i> gene family.</p>
6

The Multifunctional HnRNP A1 Protein in the Regulation of the Cyp2a5 Gene : Connecting Transcriptional and Posttranscriptional Processes

Glisovic, Tina January 2003 (has links)
The mouse xenobiotic-inducible Cyp2a5 gene is both transcriptionally and posttranscriptionally regulated. One of the most potent Cyp2a5 inducers, the hepatotoxin pyrazole, increases the CYP2A5 mRNA half-life. The induction is accomplished through the interaction of a pyrazole-inducible protein with a 71 nt long, putative hairpin-loop region in the 3' UTR of the CYP2A5 mRNA. The aims of this thesis have been to identify the pyrazole-inducible protein, to investigate its role in the Cyp2a5 expression and the significance of the 71 nt hairpin-loop region for the Cyp2a5 expression, and to examine a possible coupling between transcriptional and posttranscriptional processes in Cyp2a5 expression. The pyrazole-inducible protein was identified as the heterogeneous nuclear ribonucleoprotein (hnRNP) A1. Studies performed in mouse primary hepatocytes overexpressing hnRNP A1, and in mouse erythroleukemia derived cells lacking hnRNP A1, revealed that the 71 nt region in the 3' UTR of the CYP2A5 mRNA is essential for Cyp2a5 expression. The hnRNP A1 is a multifunctional nucleocytoplasmic shuttling protein, with the ability to bind both RNA and DNA. These properties make it an interesting candidate mediating a coupling between nuclear and cytoplasmic gene regulatory events, which was investigated for the Cyp2a5. In conditions of cellular stress hnRNP A1 translocates from the nucleus to the cytoplasm. The accumulation of cytoplasmic hnRNP A1 after RNA polymerase II transcription inhibition, resulted in an increased binding of hnRNP A1 to the CYP2A5 mRNA, parallel with a stabilization of the CYP2A5 mRNA. Treating primary mouse hepatocytes with phenobarbital (PB), a Cyp2a5 transcriptional inducer, resulted in a mainly nuclear localization of the hnRNP A1. Electrophoretic mobility shift assays with nuclear extracts from control or PB-treated mice, revealed that hnRNP A1 interacts with two regions in the Cyp2a5 proximal promoter, and that the interaction to one of the regions was stimulated by PB treatment. In conclusion, the change in hnRNP A1 subcellular localization after transcriptional inhibition or activation, together with the effects on the interaction of hnRNP A1 with the CYP2A5 mRNA and Cyp2a5 promoter, suggest that hnRNP A1 could couple the nuclear and cytoplasmic events of the Cyp2a5 expression. The presented studies are the first showing involvement of an hnRNP protein in the regulation of a Cyp gene. Moreover, it is the first time an interconnected transcriptional and posttranscriptional regulation has been suggested for a member of the Cyp gene family.

Page generated in 0.0836 seconds