• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 2
  • Tagged with
  • 17
  • 17
  • 17
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring Methods for the Characterization of Viral RNA-protein Complexes

Lejic, Zlatko January 2009 (has links)
Flock House virus (FHV) is a (+) ssRNA virus that belongs to the Nodaviridae family. The viral genome is composed of two viral RNA’s: RNA 1 and RNA 2. Deletion and mutation studies in the N- and C-terminus of protein alpha have identified protein regions required for the packaging of FHV viral RNAs. Residues 2-31 on the N-terminus have been attributed with RNA2 recognition, while residues at positions 32-50 were required for the packaging of RNA1. The C-terminus is needed for packaging of both viral RNAs. The identified protein regions involved in packaging viral RNAs bind random cellular RNA with high affinity and standard methods of identifying RNA-protein interactions such as gel shift mobility assays will be unable to discriminate between specific and unspecific binding. Due to the difficulty in differentiating between specific and unspecific binding a new method for studying RNA-protein interactions was developed using a surface based detection approach. The surface based system monitors real-time binding, whereby specific and unspecific RNA-protein interactions will be distinguished through comparison of relative association rates for each binding interaction. A well studied RNA-protein interaction, the HIV-1 Rev-RRE, was used to develop the methodology for the surface based system. Human immunodeficiency virus type 1 (HIV-1) encodes a regulatory protein Rev that binds to HIV-1 mRNA of the Rev responsive element (RRE). Rev-RRE interaction regulates viral gene expression by controlling the export of spliced and unspliced mRNAs into the cytoplasm. The high-affinity and specificity of the Rev-RRE binding has been well characterized and was used as a model system to gauge the sensitivity of the surface based detection system, which can be further used to characterize various RNA-protein interactions. The surface based system uses diffractive optics to detect real time binding of molecules to receptors that are immobilized on a flat sensor surface. An avidin coated sensor surface was applied to couple the small biotinylated Rev peptide to the surface followed by binding its complementary RRE RNA. The binding interactions of the 30 nucleotide RRE to the immobilized 23 residue Rev peptide were successfully monitored using the avidin sensor. The Rev-RRE interaction was heavily influenced by the immobilization technique and steric hindrance at the sensor surface.
2

Exploring Methods for the Characterization of Viral RNA-protein Complexes

Lejic, Zlatko January 2009 (has links)
Flock House virus (FHV) is a (+) ssRNA virus that belongs to the Nodaviridae family. The viral genome is composed of two viral RNA’s: RNA 1 and RNA 2. Deletion and mutation studies in the N- and C-terminus of protein alpha have identified protein regions required for the packaging of FHV viral RNAs. Residues 2-31 on the N-terminus have been attributed with RNA2 recognition, while residues at positions 32-50 were required for the packaging of RNA1. The C-terminus is needed for packaging of both viral RNAs. The identified protein regions involved in packaging viral RNAs bind random cellular RNA with high affinity and standard methods of identifying RNA-protein interactions such as gel shift mobility assays will be unable to discriminate between specific and unspecific binding. Due to the difficulty in differentiating between specific and unspecific binding a new method for studying RNA-protein interactions was developed using a surface based detection approach. The surface based system monitors real-time binding, whereby specific and unspecific RNA-protein interactions will be distinguished through comparison of relative association rates for each binding interaction. A well studied RNA-protein interaction, the HIV-1 Rev-RRE, was used to develop the methodology for the surface based system. Human immunodeficiency virus type 1 (HIV-1) encodes a regulatory protein Rev that binds to HIV-1 mRNA of the Rev responsive element (RRE). Rev-RRE interaction regulates viral gene expression by controlling the export of spliced and unspliced mRNAs into the cytoplasm. The high-affinity and specificity of the Rev-RRE binding has been well characterized and was used as a model system to gauge the sensitivity of the surface based detection system, which can be further used to characterize various RNA-protein interactions. The surface based system uses diffractive optics to detect real time binding of molecules to receptors that are immobilized on a flat sensor surface. An avidin coated sensor surface was applied to couple the small biotinylated Rev peptide to the surface followed by binding its complementary RRE RNA. The binding interactions of the 30 nucleotide RRE to the immobilized 23 residue Rev peptide were successfully monitored using the avidin sensor. The Rev-RRE interaction was heavily influenced by the immobilization technique and steric hindrance at the sensor surface.
3

Protein Binding Sites and Cis-acting Sequences on the West Nile Virus 3' (+) SL RNA

Davis, William G 07 August 2008 (has links)
RNase footprinting and nitrocellulose filter-binding assays were previously used to map one major and two minor binding sites for the cell protein eEF1A on the 3’(+) stem loop (SL) RNA of West Nile virus (WNV) (2). Base substitutions in the major eEF1A binding site or adjacent areas of the 3’(+) SL were engineered into a WNV infectious clone. Mutations that decreased, as well as ones that increased, eEF1A binding in in vitro assays had a negative affect on viral growth. None of these mutations affected the efficiency of translation of the viral polyprotein from the genomic RNA, but all of the mutations that decreased in vitro eEF1A binding to the 3’ SL RNA also decreased viral minus-strand RNA synthesis in transfected cells. Also, mutations that increased the efficiency of eEF1A binding to the 3’ SL RNA increased minus-strand RNA synthesis in transfected cells, which resulted in decreased synthesis of genomic RNA. These results strongly suggest that the interaction between eEF1A and the WNV 3’ SL facilitates viral minus-strand initiation. eEF1A colocalized with viral replication complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral RC proteins, suggesting that eEF1A facilitates an interaction between the 3’ end of the genome and the RC. eEF1A bound with similar efficiency to the 3’ terminal SL RNAs of four divergent flaviviruses, including a tick-borne flavivirus, and colocalized with dengue RC in infected cells. These results suggest that eEF1A plays a similar role in the RNA replication of all flaviviruses.
4

Protein Binding Sites and Cis-acting Sequences on the West Nile Virus 3' (+) SL RNA

Davis, William G 21 May 2007 (has links)
RNase footprinting and nitrocellulose filter-binding assays were previously used to map one major and two minor binding sites for the cell protein eEF1A on the 3’(+) stem loop (SL) RNA of West Nile virus (WNV) (2). Base substitutions in the major eEF1A binding site or adjacent areas of the 3’(+) SL were engineered into a WNV infectious clone. Mutations that decreased, as well as ones that increased, eEF1A binding in in vitro assays had a negative affect on viral growth. None of these mutations affected the efficiency of translation of the viral polyprotein from the genomic RNA, but all of the mutations that decreased in vitro eEF1A binding to the 3’ SL RNA also decreased viral minus-strand RNA synthesis in transfected cells. Also, mutations that increased the efficiency of eEF1A binding to the 3’ SL RNA increased minus-strand RNA synthesis in transfected cells, which resulted in decreased synthesis of genomic RNA. These results strongly suggest that the interaction between eEF1A and the WNV 3’ SL facilitates viral minus-strand initiation. eEF1A colocalized with viral replication complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral RC proteins, suggesting that eEF1A facilitates an interaction between the 3’ end of the genome and the RC. eEF1A bound with similar efficiency to the 3’ terminal SL RNAs of four divergent flaviviruses, including a tick-borne flavivirus, and colocalized with dengue RC in infected cells. These results suggest that eEF1A plays a similar role in the RNA replication of all flaviviruses.
5

Caracterização da função da proteína Nop53p de Saccharomyces cerevisiae / Study of the function of the protein Nop53p in Saccharomyces cerevisiae

Granato, Daniela Campos 07 December 2007 (has links)
Em eucariotos, o processamento de pré-rRNA depende de vários fatores como endonucleases, exonucleases, RNA helicases, enzimas modificadoras de rRNA e componentes de snoRNPs. Com o objetivo de caracterizar novas proteínas envolvidas no processamento de pré-rRNA, foi identificada a proteína Nop53p interagindo com a proteína nucleolar Nop17p a partir de uma varredura da biblioteca de cDNAs de Saccharomyces cerevisiae. A cepa condicional contendo a seqüência da ORF NOP53 sob controle do promotor de galactose não cresce em meio contendo glicose, indicando que Nop53p seja uma proteína essencial para a viabilidade celular. Os resultados deste trabalho demonstram que Nop53p está envolvida nas etapas iniciais de clivagem do pré-rRNA, assim como nas clivagens responsáveis pela formação dos rRNAs maduros 5.8S e 25S. Análise mais detalhada do processamento de pré-RNA por Northern blot e \"pulse-chase labeling\", revelou também que Nop53p afeta principalmente o processamento do rRNA intermediário 27S, que origina os rRNAs maduros 5.8S e 25S. Nop53p participa do processamento desses rRNAs afetando a poliadenilação dos precursores dos rRNAs 5.8S e 25S. Experimentos de co-imunoprecipitação de RNA com a proteína de fusão ProtA-Nop53p confirmaram o envolvimento de Nop53p no processamento do 27S rRNA, indicando que essa proteína possa ligar RNA diretamente. A capacidade de Nop53p de ligar RNA foi confirmada através de testes in vitro, enquanto que ensaios de co-imunoprecipitação de cromatina revelaram que Nop53p liga-se ao rRNA 5.8S durante a transcrição. Nop53p regula a função do exossomo através da sua interação direta com a subunidade exclusivamente nuclear deste complexo, Rrp6p. / In eukaryotes, the rRNA processing depends on several factors, such as, endonucleases, exonucleases, RNA helicases, rRNA modifying enzymes and components of the snoRNPs. With the purpose of characterizing new proteins involved in pre-rRNA processing, Nop53p was identified interacting with the nucleolar protein Nop17p in a two hybrid assay. The conditional yeast strain containing the sequence of the ORF NOP53 under the control of the galactose promoter cannot grow in medium containing glucose, indicating that the protein is essential for cell viability. The results of this work demonstrate that Nop53p is involved in the initial steps of pre-rRNA processing and in the cleavages responsible for the formation of the mature rRNAs 5.8S and 25S. A more detailed analysis of the pre-rRNA processing, by Northern blot and pulse-chase labeling, revealed that Nop53p affects the processing of the 27S precursor, that originates the rRNAs 5.8S and 25S. Nop53p participates in the processing of these RNAs by affecting the polyadenylation of the precursors of the rRNAs 5.8S and 25S. RNA co-imunoprecipitation assays with the fusion protein A-Nop53p confirmed the involvement of Nop53p in the processing of the 27S pre-rRNA, indicating that the protein may interact directly with the RNA. The capacity of Nop53p to bind RNA was confirmed by in vitro assays, while chromatin imunoprecipitation assays demonstrated that Nop53p binds the 5.8S rRNA co- transcriptionally. Nop53p regulates the function of the exosome by interacting directly with the exclusively nuclear subunit of the complex, Rrp6p.
6

Unraveling the Role of Cellular Factors in Viral Capsid Formation

Smith, Gregory Robert 01 March 2015 (has links)
Understanding the mechanisms of virus capsid assembly has been an important research objective over the past few decades. Determining critical points along the pathways by which virus capsids form could prove extremely beneficial in producing more stable DNA vectors or pinpointing targets for antiviral therapy. The inability of current experimental technology to address this objective has resulted in a need for alternative approaches. Theoretical and computational studies offer an unprecedented opportunity for detailed examination of capsid assembly. The Schwartz Lab has previously developed a discrete event stochastic simulator to model virus assembly based upon local rules detailing the geometry and interaction kinetics of individual capsid subunits. Applying numerical optimization methods to learn kinetic rate parameters that fit simulation output to in vitro static light scattering data has been a successful avenue to understand the details of virus assembly systems; however, information describing in vitro assembly processes does not necessarily translate to real virus assembly pathways in vivo. There are a number of important distinctions between experimental and realistic assembly environments that must be addressed to produce an accurate model. This thesis will describe work expanding upon previous parameter estimation algorithms for more complex data over three model icosahedral virus systems: human papillomavirus (HPV), hepatitis B virus (HBV) and cowpea chlorotic mottle virus (CCMV). Then it will consider two important modifications to assembly environment to more accurately reflect in vivo conditions: macromolecular crowding and the presence of nucleic acid about which viruses may assemble. The results of this work led to a number of surprising revelations about the variability in potential assembly rates and mechanisms discovered and insight into how assembly mechanisms are affected by changes in concentration, fluctuations in kinetic rates and adjustments to the assembly environment.
7

Identification, Characterization and Evolution of Invertebrate Telomerase RNA

January 2011 (has links)
abstract: Telomerase is a specialized enzyme that adds telomeric DNA repeats to the chromosome ends to counterbalance the progressive telomere shortening over cell divisions. It has two essential core components, a catalytic telomerase reverse transcriptase protein (TERT), and a telomerase RNA (TR). TERT synthesizes telomeric DNA by reverse transcribing a short template sequence in TR. Unlike TERT, TR is extremely divergent in size, sequence and structure and has only been identified in three evolutionarily distant groups. The lack of knowledge on TR from important model organisms has been a roadblock for vigorous studies on telomerase regulation. To address this issue, a novel in vitro system combining deep-sequencing and bioinformatics search was developed to discover TR from new phylogenetic groups. The system has been validated by the successful identification of TR from echinoderm purple sea urchin Strongylocentrotus purpuratus. The sea urchin TR (spTR) is the first invertebrate TR that has been identified and can serve as a model for understanding how the vertebrate TR evolved with vertebrate-specific traits. By using phylogenetic comparative analysis, the secondary structure of spTR was determined. The spTR secondary structure reveals unique sea urchin specific structure elements as well as homologous structural features shared by TR from other organisms. This study enhanced the understanding of telomerase mechanism and the evolution of telomerase RNP. The system that was used to identity telomerase RNA can be employed for the discovery of other TR as well as the discovery of novel RNA from other RNP complex. / Dissertation/Thesis / Ph.D. Biochemistry 2011
8

Caracterização da função da proteína Nop53p de Saccharomyces cerevisiae / Study of the function of the protein Nop53p in Saccharomyces cerevisiae

Daniela Campos Granato 07 December 2007 (has links)
Em eucariotos, o processamento de pré-rRNA depende de vários fatores como endonucleases, exonucleases, RNA helicases, enzimas modificadoras de rRNA e componentes de snoRNPs. Com o objetivo de caracterizar novas proteínas envolvidas no processamento de pré-rRNA, foi identificada a proteína Nop53p interagindo com a proteína nucleolar Nop17p a partir de uma varredura da biblioteca de cDNAs de Saccharomyces cerevisiae. A cepa condicional contendo a seqüência da ORF NOP53 sob controle do promotor de galactose não cresce em meio contendo glicose, indicando que Nop53p seja uma proteína essencial para a viabilidade celular. Os resultados deste trabalho demonstram que Nop53p está envolvida nas etapas iniciais de clivagem do pré-rRNA, assim como nas clivagens responsáveis pela formação dos rRNAs maduros 5.8S e 25S. Análise mais detalhada do processamento de pré-RNA por Northern blot e \"pulse-chase labeling\", revelou também que Nop53p afeta principalmente o processamento do rRNA intermediário 27S, que origina os rRNAs maduros 5.8S e 25S. Nop53p participa do processamento desses rRNAs afetando a poliadenilação dos precursores dos rRNAs 5.8S e 25S. Experimentos de co-imunoprecipitação de RNA com a proteína de fusão ProtA-Nop53p confirmaram o envolvimento de Nop53p no processamento do 27S rRNA, indicando que essa proteína possa ligar RNA diretamente. A capacidade de Nop53p de ligar RNA foi confirmada através de testes in vitro, enquanto que ensaios de co-imunoprecipitação de cromatina revelaram que Nop53p liga-se ao rRNA 5.8S durante a transcrição. Nop53p regula a função do exossomo através da sua interação direta com a subunidade exclusivamente nuclear deste complexo, Rrp6p. / In eukaryotes, the rRNA processing depends on several factors, such as, endonucleases, exonucleases, RNA helicases, rRNA modifying enzymes and components of the snoRNPs. With the purpose of characterizing new proteins involved in pre-rRNA processing, Nop53p was identified interacting with the nucleolar protein Nop17p in a two hybrid assay. The conditional yeast strain containing the sequence of the ORF NOP53 under the control of the galactose promoter cannot grow in medium containing glucose, indicating that the protein is essential for cell viability. The results of this work demonstrate that Nop53p is involved in the initial steps of pre-rRNA processing and in the cleavages responsible for the formation of the mature rRNAs 5.8S and 25S. A more detailed analysis of the pre-rRNA processing, by Northern blot and pulse-chase labeling, revealed that Nop53p affects the processing of the 27S precursor, that originates the rRNAs 5.8S and 25S. Nop53p participates in the processing of these RNAs by affecting the polyadenylation of the precursors of the rRNAs 5.8S and 25S. RNA co-imunoprecipitation assays with the fusion protein A-Nop53p confirmed the involvement of Nop53p in the processing of the 27S pre-rRNA, indicating that the protein may interact directly with the RNA. The capacity of Nop53p to bind RNA was confirmed by in vitro assays, while chromatin imunoprecipitation assays demonstrated that Nop53p binds the 5.8S rRNA co- transcriptionally. Nop53p regulates the function of the exosome by interacting directly with the exclusively nuclear subunit of the complex, Rrp6p.
9

Sélection de peptides altérant le changement de cadre de lecture -1 programmé du VIH-1

Théberge-Julien, Gabriel January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
10

Identificação in silico de ncRNAs no organismo modelo Halobacterium salinarum NRC-1 / In Silico identification of non-coding RNAs in Halobacterium salinarum NRC-1 model archeon organism

Marcos Abraão de Souza Fonseca 25 April 2016 (has links)
A regulação da expressão gênica ocorre como um fenômeno essencial nos processos celulares em resposta a dinamicidade mútua estabelecida entre um organismo e seu meio. Além dos elementos reguladores já conhecidos, como fatores de transcrição ou modificações pós-transcricionais, observa-se um crescente interesse no papel de regulação desempenhado por moléculas de RNA não codificadores (ncRNA), que podem atuar em vários níveis de processamento da informação biológica. Organismos modelos oferecem uma forma conveniente de pesquisa e diferentes grupos buscam direcionar seus estudos para um entendimento mais amplo no que se refere aos mecanismos celulares presentes nesses organismos. Apesar da existência de alguns elementos conhecidos para o organismo modelo Halobacterium salinarum, acreditamos que nem todos seus elementos de ncRNAs foram identificados. Nesse contexto, desenvolvemos uma análise in silico para a identificação de novos ncRNAs em H. salinarum NRC-1 e aplicamos metodologias para a predição de possíveis interações RNA-Proteína. Com base em uma pespectiva de integração de dados e diferentes metodologias existentes, modelos de Aprendizado de Máquina (AM) foram criados e utilizados para a definição de regiões candidatas a ncRNAs. De acordo com os resultados, 42 novos ncRNAs puderam ser identificados e possibilitaram completar o catálogo de genes ncRNAs de H. salinarum NRC-1 e aumentar o universo conhecido destes em 82%. A análise dos resultados obtidos por outras abordagens disponíveis para a identificação de ncRNAs corroboram com alguns dos candidatos sugeridos neste trabalho. Adicionalmente, foram aplicados e avaliados métodos, também baseados em AM, para a identificação de candidatos à interação com a proteína de interesse LSm, presente no organismo em estudo, no intuito de incluir uma possível caracterização funcional de ncRNAs. Os resultados alcançados na aplicação metodologias para a predição de interações RNA-Proteína não foram suficientes para a criação de um modelo com predições de alto grau de acurácia porém, contribuem como estudos preliminares e discussões para o desenvolvimento de outras estratégias. / The gene expression regulation occurs on different cell levels in response to dynamics established between an organism and its environment. In addition to the regulatory elements already known, for instance, transcription factors or post-translation modifications, there is growing interests in the regulatory role played by non-coding RNA molecules (ncRNA) whose functions can be performed on different level of biological information processing. Model organisms allow a convenient way to work on laboratory and different research groups aiming to guide their studies for a mutual and wide understanding of the cellular mechanisms present on these organisms. Although some ncRNAs elements have been found in Halobacterium salinarum model organism we believe that not enough is knowing about these genomic regions. In these context, an in silico analysis for ncRNAs identification and RNA-protein prediction approach were applied to H. salinarum NRC-1. Considering a data integration perspective and some available methodologies, several machine learning models was built and used to designate candidate ncRNAs genome regions. According to achieve results, 42 new ncRNAs could be identified, increasing 82% the total of known ncRNAs in H. salinarum NRC-1. Combing analysis with other available tools, it had been observed that some suggested candidates also was found with different methodologies and thus, it highlights the proposed results. Additionally, we developed and analyzed methods, also machine learning based, to predict ncRNAs candidates to interact with LSm protein, present on the interested model organism aiming a basic ncRNA characterization. The achieved results in this part was not satisfactory since the applied models were not substantially accurate predictions. However, we believe that these preliminary results can contribute with some discussions to new different approaches.

Page generated in 0.133 seconds