• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterização da função da proteína Nop53p de Saccharomyces cerevisiae / Study of the function of the protein Nop53p in Saccharomyces cerevisiae

Granato, Daniela Campos 07 December 2007 (has links)
Em eucariotos, o processamento de pré-rRNA depende de vários fatores como endonucleases, exonucleases, RNA helicases, enzimas modificadoras de rRNA e componentes de snoRNPs. Com o objetivo de caracterizar novas proteínas envolvidas no processamento de pré-rRNA, foi identificada a proteína Nop53p interagindo com a proteína nucleolar Nop17p a partir de uma varredura da biblioteca de cDNAs de Saccharomyces cerevisiae. A cepa condicional contendo a seqüência da ORF NOP53 sob controle do promotor de galactose não cresce em meio contendo glicose, indicando que Nop53p seja uma proteína essencial para a viabilidade celular. Os resultados deste trabalho demonstram que Nop53p está envolvida nas etapas iniciais de clivagem do pré-rRNA, assim como nas clivagens responsáveis pela formação dos rRNAs maduros 5.8S e 25S. Análise mais detalhada do processamento de pré-RNA por Northern blot e \"pulse-chase labeling\", revelou também que Nop53p afeta principalmente o processamento do rRNA intermediário 27S, que origina os rRNAs maduros 5.8S e 25S. Nop53p participa do processamento desses rRNAs afetando a poliadenilação dos precursores dos rRNAs 5.8S e 25S. Experimentos de co-imunoprecipitação de RNA com a proteína de fusão ProtA-Nop53p confirmaram o envolvimento de Nop53p no processamento do 27S rRNA, indicando que essa proteína possa ligar RNA diretamente. A capacidade de Nop53p de ligar RNA foi confirmada através de testes in vitro, enquanto que ensaios de co-imunoprecipitação de cromatina revelaram que Nop53p liga-se ao rRNA 5.8S durante a transcrição. Nop53p regula a função do exossomo através da sua interação direta com a subunidade exclusivamente nuclear deste complexo, Rrp6p. / In eukaryotes, the rRNA processing depends on several factors, such as, endonucleases, exonucleases, RNA helicases, rRNA modifying enzymes and components of the snoRNPs. With the purpose of characterizing new proteins involved in pre-rRNA processing, Nop53p was identified interacting with the nucleolar protein Nop17p in a two hybrid assay. The conditional yeast strain containing the sequence of the ORF NOP53 under the control of the galactose promoter cannot grow in medium containing glucose, indicating that the protein is essential for cell viability. The results of this work demonstrate that Nop53p is involved in the initial steps of pre-rRNA processing and in the cleavages responsible for the formation of the mature rRNAs 5.8S and 25S. A more detailed analysis of the pre-rRNA processing, by Northern blot and pulse-chase labeling, revealed that Nop53p affects the processing of the 27S precursor, that originates the rRNAs 5.8S and 25S. Nop53p participates in the processing of these RNAs by affecting the polyadenylation of the precursors of the rRNAs 5.8S and 25S. RNA co-imunoprecipitation assays with the fusion protein A-Nop53p confirmed the involvement of Nop53p in the processing of the 27S pre-rRNA, indicating that the protein may interact directly with the RNA. The capacity of Nop53p to bind RNA was confirmed by in vitro assays, while chromatin imunoprecipitation assays demonstrated that Nop53p binds the 5.8S rRNA co- transcriptionally. Nop53p regulates the function of the exosome by interacting directly with the exclusively nuclear subunit of the complex, Rrp6p.
2

Estudo da via de incorporação de selenocisteínas: compreensão dos mecanismos de interações macromoleculares / Study of the selenocysteine incorporation pathway: understanding the macromolecular interaction mechanism

Scortecci, Jéssica Fernandes 04 February 2019 (has links)
A existência de aminoácidos co-traducionalmente codificados pelo código genético tem estimulado estudos sobre os mecanismos de síntese, reconhecimento e incorporação nas cadeias polipeptídicas nascentes. Como exemplo, pode-se destacar a via específica de biossíntese do aminoácido selenocisteína, presente em eucariotos e procariotos, cuja incorporação ocorre juntamente ao códon de parada UGA. Em bactérias, a via de biossíntese de Sec é composta pelas proteínas Selenocisteína sintase (SelA), Fator de Elongação Específico (SelB), Selenofosfato sintetase (SelD), Seril-tRNA sintetase (SerRS) e Selenocisteína liase (CsdB). A via de síntese e incorporação de Sec depende também de dois RNAs; um tRNA específico (tRNASec) e uma sequência no mRNA (Sequência de Inserção de Selenocisteínas - SECIS), sinalizadora para correta incorporação de Sec junto ao códon UGA. Em eucariotos, essa via difere pela presença das proteínas O-fosfoseril-tRNASec Quinase (PSTK) e Selenocisteil-tRNASec sintase (SepSecS), em substituição a SelA, e pela presença de proteínas ligadoras ao elemento SECIS (SBP2). Pelo fato do selênio ter uma citotoxicidade elevada, é fundamental a compreensão do mecanismo catalítico e formação dos complexos da via na etapa de incorporação junto ao tRNASec. Em 2009, foi proposta a interação entre CsdB e SelD, porém não sendo demonstradaexperimentalmente até o momento. Dessa forma, esse estudo traz pela primeira vez, a caracterização biofísica e estrutural da interação macromolecular entre CsdB e SelD bacterianas, indicando uma elevada afinidade de interação entre elas sob diferentes condições experimentais. Estudos biofísicos mostraram que a interação aumenta a estabilidade térmica e os estudos estruturais resultaram em um modelo em baixa resolução do complexo, indicando uma assimetria para o complexo formado. Além disso, em 2013 nosso grupo anotou uma sequência putativa para uma SBP2 em N. gruberi, ameba não patogênica empregada como modelo para estudos de N. fowleri, conhecida a infectar humanos, resultando na patologia conhecida como Meningoencefalite Amebiana Primária. Deste modo, esse estudo também traz, pela primeira vez, a demonstração experimental da presença de uma SBP2 em N. gruberi Ademais, a interação desta proteína como o elemento SECIS também foi caracterizada através de diversos estudos biofísicos. Demonstrou-se que a NgSBP2 possui alto percentual de regiões de desordem e que ao interagir com o elemento SECIS apresenta enovelamento devido à interação. Dessa forma, este estudo trouxe um avanço no conhecimento das interações moleculares presentes na via de incorporação de selenocisteínas, sendo de grande relevância no entendimento dos determinantes moleculares de interação entre proteína-proteína e proteína-RNA. / The existence of co-translationally encoded amino acids by the genetic code has stimulated studies on the mechanisms of synthesis, recognition, and incorporation into new polypeptide chains. As an example, the selenocysteine (Sec) biosynthesis pathway, present in eukaryotes and prokaryotes, where the amino acid incorporation occurs at the canonical UGA stop-codon. In Bacteria, the Sec biosynthesis pathway is formed by Selenocysteine synthase (SelA), Specific Elongation Factor (SelB), Selenophosphate synthetase (SelD), Seryl-tRNA synthetase (SerRS) and Selenocysteine lyase (CsdB). The synthesis route also needs two RNAs; a specific tRNA (tRNASec) and a sequence in the mRNA (SelenoCysteine Insertion Sequence - SECIS) that encodes for the in-frame UGA Sec incorporation. In eukaryotes, the pathway is distinguished through the presence of O-phosphoseryl-tRNASec kinase (PSTK) and Selenocysteinyl-tRNASec synthase (SepSecS), replacing SelA, also the presence of SECIS binding proteins (SBP2). Once selenium presents high cell toxicity, it is crucial to fully understand the catalytic metabolism and complex formation for the tRNASec incorporation. In 2009, CsdB and SelD interaction was proposed, however, it has not been experimentally demonstrated until now. Thus, this project reports at the first time the biophysical and structural characterization of bacterial CsdB and SelD macromolecular interaction, indicating to a high-affinity interaction between these enzymes for the complex formation. Biophysical assays showed that the complex increased the thermal stability and structural studies showed a low-resolution model also indicating the macromolecule asymmetry. In addition, our research group reported in 2013 the putative SBP2 sequence in N. gruberi, the non-pathogenic amoeba used as a model for studies of N. fowleri, known as human infective, responsible for the pathology known as the Primary Amebic Meningoencephalitis. Moreover, this project also reports, at the first time, the experimental presence of N. gruberi SBP2. The SBP2.SECIS was also characterized by several biophysical methods. NgSBP2 has a high percentage of regions of disorder and access to each element SECIS presents due to interaction. Thus, this study was promoted in advance on the molecular interactions present in the incorporation of selenocysteines, being important for the understanding of the molecular determinants of the interaction between protein-protein and RNA-protein.
3

Caracterização das interações macromoleculares das proteínas envolvidas na síntese de selenocisteínas em Escherichia coli / Characterization of the macromolecular interactions of proteins involved in the synthesis of selenocysteines in Escherichia coli

Serrão, Vitor Hugo Balasco 03 March 2017 (has links)
O estudo de processos de tradução do código genético em proteínas desperta o interesse pelo seu papel central no metabolismo celular, em particular, o estudo da via de síntese de novos aminoácidos, como a selenocisteína e a pirrolisina, que resultam na expansão do código genético dos 20 aminoácidos canônicos para um total de 22 aminoácidos. A selenocisteína (Sec, U) é um aminoácido que representa a principal forma biológica do elemento selênio e sua incorporação ocorre através de um processo cotraducional em selenoproteínas como resposta ao códon UGA em fase, usualmente interpretado como códon de parada. Essa incorporação requer uma complexa maquinaria molecular distinta entre os três domínios da vida em que as selenoproteínas estão presentes: Bactéria, Arquéia e Eucária. Em Escherichia coli, a via se inicia com a aminoacilação do tRNA específico para a incorporação de selenocisteínas (SelC, tRNASec) com um resíduo de L-serina pela seril-tRNA sintetase (SerRS) formando o tRNA carregado Ser-tRNA[Ser]Sec que é entregue ao complexo homodecamérico selenocisteína sintase (SelA) responsável pela conversão Ser-Sec utilizando a forma biológica de selênio entregue pela enzima selenofosfato sintetase (SelD). Uma vez carregado com L-selenocisteína, o Sec-tRNASec é então carreado pelo fator de elongação específico para selenocisteínas (SelB) para a sua incorporação na cadeia polipeptídica nascente na posição UGA adjunta ao elemento SECIS (SElenoCysteine Insertion Sequence), uma estrutura em grampo presente no RNA mensageiro que indica o códon de inserção de selenocisteínas. Uma vez que elementos contendo selênio são tóxicos para o ambiente celular, interações entre as enzimas da via se fazem necessárias, onde as enzimas participantes em procariotos são conhecidas e caracterizadas individualmente, no entanto, suas interações macromoleculares nas diferentes etapas ainda não foram caracterizadas. Este projeto visa à caracterização macromolecular e estrutural das interações entre as enzimas SelA e SelB com os RNAs participantes tRNASec e SECIS além do ribossomo de E. coli. Para isso, amostras de SelA, SelB, tRNASec, SECIS e ribossomo foram obtidas através de diferentes metodologias. Para SelA e tRNASec foram utilizados protocolos já estabelecidos enquanto que, para SelB, fez-se necessário a otimização do protocolo previamente publicado e, consequentemente, nova caracterização biofísica através de metodologias como dicroísmo dircular (CD) e fluorescência intrínseca (IFS). Para análise das interações, medidas de espectroscopia de anisotropia de fluorescência (FAS), ultracentrifugação analítica (AUC) e calorimetria de varredura diferencial (DSC) foram utilizadas para determinação dos parâmetros de interação dos diferentes complexos estudados. Somado a isso, experimentos de cinética GTPásica foram realizados na formação dos complexos e, além disso, foram gerados modelos estruturais utilizando diferentes metodologias como espalhamento de raios-X a baixo ângulo (SAXS) além de estudos por microscopia eletrônica de transmissão (TEM). Os estudos propostos irão auxiliar no entendimento do mecanismo de incorporação deste aminoácido em bactérias bem como nos demais domínios da vida além de elucidar o mecanismo sequencial de eventos, provendo conhecimento e desenvolvendo metodologias para sistemas complexos de interação proteína-proteína e proteína-RNA. / The study of genetic code processes in proteins is a central role in cell metabolism, in particular the study of the synthesis pathway of new amino acids, such as selenocysteine and pyrrolisine, which resulted in the expansion of the genetic code of the 20 canonical amino acids for 22 amino acids. Selenocysteine (Sec, U) is an amino acid that represents a major biological form of selenium element and its incorporation through a co-translational process in selenoproteins in response to the in-phase UGA-codon, usually interpreted as stop-codon. This incorporation requires a complex molecular machinery distinct between the three domains of life in which, as selenoprotein has present: Bacteria, Archaea and Eukaria. In Escherichia coli, an initiation pathway with an aminoacylation of the tRNA specific for the incorporation of selenocysteines (SelC, tRNASec) with an L-serine residue by seril-tRNA synthetase (SerRS) resulting in the charged tRNA Ser-tRNA[Ser] Sec that is delivered to the homodecameric complex selenocysteine synthase (SelA), responsible for Ser-Sec conversion using the biological form of selenium delivered by the enzyme selenophosphate synthetase (SelD). Once loaded with L-selenocysteine, Sec-tRNASec is then carried by the selenocysteine-specific elongation factor (SelB) for incorporation into the nascent polypeptide chain at the UGA position attached to the SECIS (SElenoCysteine Insertion Sequence) element, staple structure that indicates the insertion codon of selenocysteines. Since elements containing selenium are toxic to the cell, interactions between how pathway enzymes are made, where the enzymes participating in concepts are known and characterized individually, however, their macromolecular interactions in the different steps have not yet been characterized. This project aims at the macromolecular and structural characterization of the interactions between SelA and SelB enzymes with the RNAS tRNASec and SECIS participants in addition to the E. coli ribosome. For this, as samples of SelA, SelB, tRNASec, SECIS and ribosome were obtained through different methodologies. For SelA and tRNASec, protocols were used to determine parameters for SelB, it was necessary to optimize a previously published protocol and, consequently, a new biophysical characterization through methodologies such as circular dichroism (CD) and intrinsic fluorescence spectroscopy (IFS). To analyze the interactions, measurements of fluorescence anisotropy spectroscopy (FAS), analytical ultracentrifugation (AUC) and differential scanning calorimetry (DSC) were used to determine the interaction parameters of different complexes studied. In addition, GTPases activity experiments were carried out in the formation of the complexesand, in addition, we have generated models that characterize different methodologies such as small angles X-ray scattering (SAXS) and transmission electron microscopy (TEM). The proposed studies will aid in understanding the mechanism of incorporation of this amino acid into bacteria as well as the other domains of life besides elucidating the sequential mechanism of events, providing knowledge and development of methodologies for complex protein-protein and RNA-protein interaction systems.
4

Caracterização das interações macromoleculares das proteínas envolvidas na síntese de selenocisteínas em Escherichia coli / Characterization of the macromolecular interactions of proteins involved in the synthesis of selenocysteines in Escherichia coli

Vitor Hugo Balasco Serrão 03 March 2017 (has links)
O estudo de processos de tradução do código genético em proteínas desperta o interesse pelo seu papel central no metabolismo celular, em particular, o estudo da via de síntese de novos aminoácidos, como a selenocisteína e a pirrolisina, que resultam na expansão do código genético dos 20 aminoácidos canônicos para um total de 22 aminoácidos. A selenocisteína (Sec, U) é um aminoácido que representa a principal forma biológica do elemento selênio e sua incorporação ocorre através de um processo cotraducional em selenoproteínas como resposta ao códon UGA em fase, usualmente interpretado como códon de parada. Essa incorporação requer uma complexa maquinaria molecular distinta entre os três domínios da vida em que as selenoproteínas estão presentes: Bactéria, Arquéia e Eucária. Em Escherichia coli, a via se inicia com a aminoacilação do tRNA específico para a incorporação de selenocisteínas (SelC, tRNASec) com um resíduo de L-serina pela seril-tRNA sintetase (SerRS) formando o tRNA carregado Ser-tRNA[Ser]Sec que é entregue ao complexo homodecamérico selenocisteína sintase (SelA) responsável pela conversão Ser-Sec utilizando a forma biológica de selênio entregue pela enzima selenofosfato sintetase (SelD). Uma vez carregado com L-selenocisteína, o Sec-tRNASec é então carreado pelo fator de elongação específico para selenocisteínas (SelB) para a sua incorporação na cadeia polipeptídica nascente na posição UGA adjunta ao elemento SECIS (SElenoCysteine Insertion Sequence), uma estrutura em grampo presente no RNA mensageiro que indica o códon de inserção de selenocisteínas. Uma vez que elementos contendo selênio são tóxicos para o ambiente celular, interações entre as enzimas da via se fazem necessárias, onde as enzimas participantes em procariotos são conhecidas e caracterizadas individualmente, no entanto, suas interações macromoleculares nas diferentes etapas ainda não foram caracterizadas. Este projeto visa à caracterização macromolecular e estrutural das interações entre as enzimas SelA e SelB com os RNAs participantes tRNASec e SECIS além do ribossomo de E. coli. Para isso, amostras de SelA, SelB, tRNASec, SECIS e ribossomo foram obtidas através de diferentes metodologias. Para SelA e tRNASec foram utilizados protocolos já estabelecidos enquanto que, para SelB, fez-se necessário a otimização do protocolo previamente publicado e, consequentemente, nova caracterização biofísica através de metodologias como dicroísmo dircular (CD) e fluorescência intrínseca (IFS). Para análise das interações, medidas de espectroscopia de anisotropia de fluorescência (FAS), ultracentrifugação analítica (AUC) e calorimetria de varredura diferencial (DSC) foram utilizadas para determinação dos parâmetros de interação dos diferentes complexos estudados. Somado a isso, experimentos de cinética GTPásica foram realizados na formação dos complexos e, além disso, foram gerados modelos estruturais utilizando diferentes metodologias como espalhamento de raios-X a baixo ângulo (SAXS) além de estudos por microscopia eletrônica de transmissão (TEM). Os estudos propostos irão auxiliar no entendimento do mecanismo de incorporação deste aminoácido em bactérias bem como nos demais domínios da vida além de elucidar o mecanismo sequencial de eventos, provendo conhecimento e desenvolvendo metodologias para sistemas complexos de interação proteína-proteína e proteína-RNA. / The study of genetic code processes in proteins is a central role in cell metabolism, in particular the study of the synthesis pathway of new amino acids, such as selenocysteine and pyrrolisine, which resulted in the expansion of the genetic code of the 20 canonical amino acids for 22 amino acids. Selenocysteine (Sec, U) is an amino acid that represents a major biological form of selenium element and its incorporation through a co-translational process in selenoproteins in response to the in-phase UGA-codon, usually interpreted as stop-codon. This incorporation requires a complex molecular machinery distinct between the three domains of life in which, as selenoprotein has present: Bacteria, Archaea and Eukaria. In Escherichia coli, an initiation pathway with an aminoacylation of the tRNA specific for the incorporation of selenocysteines (SelC, tRNASec) with an L-serine residue by seril-tRNA synthetase (SerRS) resulting in the charged tRNA Ser-tRNA[Ser] Sec that is delivered to the homodecameric complex selenocysteine synthase (SelA), responsible for Ser-Sec conversion using the biological form of selenium delivered by the enzyme selenophosphate synthetase (SelD). Once loaded with L-selenocysteine, Sec-tRNASec is then carried by the selenocysteine-specific elongation factor (SelB) for incorporation into the nascent polypeptide chain at the UGA position attached to the SECIS (SElenoCysteine Insertion Sequence) element, staple structure that indicates the insertion codon of selenocysteines. Since elements containing selenium are toxic to the cell, interactions between how pathway enzymes are made, where the enzymes participating in concepts are known and characterized individually, however, their macromolecular interactions in the different steps have not yet been characterized. This project aims at the macromolecular and structural characterization of the interactions between SelA and SelB enzymes with the RNAS tRNASec and SECIS participants in addition to the E. coli ribosome. For this, as samples of SelA, SelB, tRNASec, SECIS and ribosome were obtained through different methodologies. For SelA and tRNASec, protocols were used to determine parameters for SelB, it was necessary to optimize a previously published protocol and, consequently, a new biophysical characterization through methodologies such as circular dichroism (CD) and intrinsic fluorescence spectroscopy (IFS). To analyze the interactions, measurements of fluorescence anisotropy spectroscopy (FAS), analytical ultracentrifugation (AUC) and differential scanning calorimetry (DSC) were used to determine the interaction parameters of different complexes studied. In addition, GTPases activity experiments were carried out in the formation of the complexesand, in addition, we have generated models that characterize different methodologies such as small angles X-ray scattering (SAXS) and transmission electron microscopy (TEM). The proposed studies will aid in understanding the mechanism of incorporation of this amino acid into bacteria as well as the other domains of life besides elucidating the sequential mechanism of events, providing knowledge and development of methodologies for complex protein-protein and RNA-protein interaction systems.
5

Caracterização da função da proteína Nop53p de Saccharomyces cerevisiae / Study of the function of the protein Nop53p in Saccharomyces cerevisiae

Daniela Campos Granato 07 December 2007 (has links)
Em eucariotos, o processamento de pré-rRNA depende de vários fatores como endonucleases, exonucleases, RNA helicases, enzimas modificadoras de rRNA e componentes de snoRNPs. Com o objetivo de caracterizar novas proteínas envolvidas no processamento de pré-rRNA, foi identificada a proteína Nop53p interagindo com a proteína nucleolar Nop17p a partir de uma varredura da biblioteca de cDNAs de Saccharomyces cerevisiae. A cepa condicional contendo a seqüência da ORF NOP53 sob controle do promotor de galactose não cresce em meio contendo glicose, indicando que Nop53p seja uma proteína essencial para a viabilidade celular. Os resultados deste trabalho demonstram que Nop53p está envolvida nas etapas iniciais de clivagem do pré-rRNA, assim como nas clivagens responsáveis pela formação dos rRNAs maduros 5.8S e 25S. Análise mais detalhada do processamento de pré-RNA por Northern blot e \"pulse-chase labeling\", revelou também que Nop53p afeta principalmente o processamento do rRNA intermediário 27S, que origina os rRNAs maduros 5.8S e 25S. Nop53p participa do processamento desses rRNAs afetando a poliadenilação dos precursores dos rRNAs 5.8S e 25S. Experimentos de co-imunoprecipitação de RNA com a proteína de fusão ProtA-Nop53p confirmaram o envolvimento de Nop53p no processamento do 27S rRNA, indicando que essa proteína possa ligar RNA diretamente. A capacidade de Nop53p de ligar RNA foi confirmada através de testes in vitro, enquanto que ensaios de co-imunoprecipitação de cromatina revelaram que Nop53p liga-se ao rRNA 5.8S durante a transcrição. Nop53p regula a função do exossomo através da sua interação direta com a subunidade exclusivamente nuclear deste complexo, Rrp6p. / In eukaryotes, the rRNA processing depends on several factors, such as, endonucleases, exonucleases, RNA helicases, rRNA modifying enzymes and components of the snoRNPs. With the purpose of characterizing new proteins involved in pre-rRNA processing, Nop53p was identified interacting with the nucleolar protein Nop17p in a two hybrid assay. The conditional yeast strain containing the sequence of the ORF NOP53 under the control of the galactose promoter cannot grow in medium containing glucose, indicating that the protein is essential for cell viability. The results of this work demonstrate that Nop53p is involved in the initial steps of pre-rRNA processing and in the cleavages responsible for the formation of the mature rRNAs 5.8S and 25S. A more detailed analysis of the pre-rRNA processing, by Northern blot and pulse-chase labeling, revealed that Nop53p affects the processing of the 27S precursor, that originates the rRNAs 5.8S and 25S. Nop53p participates in the processing of these RNAs by affecting the polyadenylation of the precursors of the rRNAs 5.8S and 25S. RNA co-imunoprecipitation assays with the fusion protein A-Nop53p confirmed the involvement of Nop53p in the processing of the 27S pre-rRNA, indicating that the protein may interact directly with the RNA. The capacity of Nop53p to bind RNA was confirmed by in vitro assays, while chromatin imunoprecipitation assays demonstrated that Nop53p binds the 5.8S rRNA co- transcriptionally. Nop53p regulates the function of the exosome by interacting directly with the exclusively nuclear subunit of the complex, Rrp6p.
6

Caracterização das proteinas humanas Mov34 e PACT e analise da sua interação com o RNA do virus da dengue / Characterization of the human Mov34 and PACT proteins and analyses of their interaction with dengue virus RNA

Alves, Beatriz Santos Capela 21 August 2008 (has links)
Orientador: Nilson Ivo Tonin Zanchin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-11T18:49:26Z (GMT). No. of bitstreams: 1 Alves_BeatrizSantosCapela_D.pdf: 5512305 bytes, checksum: 707ea6299bc24ddc6fb459520d79aeee (MD5) Previous issue date: 2008 / Resumo: O combate à dengue atualmente está limitado praticamente aos esforços de eliminação do mosquito transmissor, o Aedes aegypti, porém esta estratégia não tem se mostrado eficiente. O desenvolvimento de novos instrumentos de combate à dengue requer, portanto, maior conhecimento sobre a biologia do vírus com relação à sua interação com seus hospedeiros. O genoma do vírus é constituído por um RNA simples-fita de polaridade positiva e possui duas regiões não traduzidas (5¿ e 3¿ UTR). A região 5¿UTR viral possui organização similar à dos mRNAs eucarióticos, diferentemente da região 3¿UTR que é longa e não possui cauda de poli(A). Em vez disso, na região 3¿UTR encontram-se estruturas conservadas entre os diferentes Flavivirus, dentre elas a estrutura 3¿ stem-loop (3¿SL) que é indispensável para a replicação do RNA viral. O objetivo do nosso estudo foi identificar novas proteínas humanas capazes de interagir com a estrutura 3¿SL do RNA do vírus da dengue. Dados da literatura descrevem que a proteína Mov34 de camundongo interage com 3¿SL do vírus da encefalite japonesa. Devido à alta similaridade entre as proteínas ortólogas humana e de camundongo, bem como das respectivas estruturas 3¿SL dos vírus da dengue e da encefalite japonesa, foi testada a interação entre a Mov34 humana com o 3¿SL do vírus da dengue. Porém, em nenhuma das condições testadas foi possível obter evidência de interação da Mov34 humana com 3¿SL dos vírus da dengue e da encefalite japonesa. Para a identificação de novas proteínas que são capazes de interagir com a estrutura 3¿SL do RNA do vírus da dengue foi utilizado o ensaio de triplo-híbrido de levedura. A proteína humana PACT, conhecida como proteína celular ativadora de PKR, foi isolada neste ensaio utilizando 3¿SL como isca. PKR é uma quinase ativada por PACT ou RNA dupla-fita. A ativação de PKR leva a um estado antiviral adquirido pela fosforilação do fator de iniciação da tradução eIF2a e conseqüente inibição da tradução. Além disso, PKR está envolvida em outras vias de transdução de sinal e na resposta celular à proteínas desenoveladas. A ação antiviral de PACT é evidenciada pela ação de proteínas dos vírus influenza A e herpes simplex tipo 1 que inibem a ativação de PKR por PACT e por RNA dupla-fita. A interação direta de PACT com 3¿SL do RNA do vírus da dengue foi confirmada por ensaio de UVcrosslinking PACT possui três domínios de interação com RNA dupla-fita, sendo que os dois domínios N-terminais são responsáveis pela sua interação com o 3¿SL. Foi identificada uma região específica do 3¿SL, o stem-loop superior, onde PACT interage com maior afinidade. Além disso, foi mostrado que PACT endógena de células HEK293 é capaz de interagir com o 3¿SL biotinilado. Para caracterizar a função desta interação durante a infecção viral, foi desenvolvida uma linhagem celular com inibição da expressão de PACT através da técnica de RNA de interferência. Com esta linhagem poderemos analisar a importância da interação entre PACT e o RNA do vírus da dengue quanto à ativação e/ou inibição de PKR durante a infecção viral / Abstract: The combat to the dengue virus is basically limited to the efforts in eliminating the transmitter mosquito, the Aedes aegypti. But this strategy is not very efficient. The development of new instruments of combat to dengue virus requires improved knowledge about the virus biology and its relation to hosts. The dengue virus genome is a single-stranded RNA of positive polarity flanked by a 5¿ untranslated region (UTR) of ~100 bases and a highly structured 3¿ UTR of ~450 bases. As many other viruses, dengue encodes the enzymes required for its genome replication, but relies completely on the host translational machinery to synthesize its proteins. The essential difference between host cellular mRNAs and dengue virus genome RNA involves the 3¿UTR, which instead of a polyadenylate tail contains highly conserved structural elements, including the 3' stem-loop (3¿SL), located at the 3' terminus of the 3'UTR of many flaviviruses that is essential for their replication. The aim of this study is to identify new human proteins capable of interacting with dengue virus RNA 3¿SL structure. Literature data describe that the murine Mov34 protein interacts with Japanese encephalitis virus 3¿SL. Giving the high similarity between the human and murine ortholog proteins, as well as the conservation of the Flavivivirus RNA 3¿SL structure, we tested the interaction between the human Mov34 and the dengue virus 3¿SL. However, no interaction was detected under the conditions used in this work. In addition, the yeast three-hybrid system was used to screen for novel proteins that interact with the dengue virus 3¿SL. Human PACT, known as the cellular protein activator of PKR, was identified as a putative 3¿SL-interacting protein. PKR is an interferon-inducible, PACT or double-stranded RNA activated protein kinase. Activated PKR phosphorylates the translation initiation factor eIF2a, inhibiting translation of cellular and viral RNAs, leading to a cellular antiviral state. PACT and doublestranded RNA activation of PKR is inhibited by influenza A and herpes simplex type 1 virus proteins during viral infection, indicating that PACT plays a role in the cellular antiviral state. Direct interaction between PACT and 3¿SL was confirmed by UV-crosslinking assays. PACT contains three doublestranded RNA interaction motifs, but only the two N-terminal motifs are responsible for 3¿SL interaction. A 3¿SL specific region, the top stem-loop, was identified to interact with PACT with higher affinity. Furthermore, HEK293 cells endogenous PACT interacts with biotin-labeled 3¿SL. To further characterize PACT-3¿SL interaction during dengue virus infection, a cell line with low expression of PACT was developed using the RNA interference technique. This cell line will be used to determine the propagation rate of dengue virus which is expected to reveal the importance of PACT either for the cell antiviral state or for dengue virus proliferation / Doutorado / Genetica Animal e Evolução / Doutor em Genetica e Biologia Molecular

Page generated in 0.0954 seconds