• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 129
  • 40
  • 19
  • 13
  • 8
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 518
  • 518
  • 119
  • 119
  • 96
  • 73
  • 69
  • 67
  • 65
  • 60
  • 53
  • 53
  • 52
  • 48
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Numerical Comparison of Muzzle Blast Loaded Structure

Quinn, Xavier Anthony 15 March 2022 (has links)
Modeling and simulation have played an essential role in understanding the effects of blast waves. However, a broad area of engineering problems, such as vehicle structures, buildings, bridges, or even the human body, can benefit by accurately predicting the response to blasts with little need for test or event data. This thesis reviews fundamental concepts of blast waves and explosives and discusses research in blast scaling. Blast scaling is a method that reduces the computational costs associated with modeling blasts by using empirical data and numerically calculating blast field parameters over time for various types and sizes of explosives. This computational efficiency is critical in studying blast waves' near and far-field effects. This thesis also reviews research to differentiate between free-air blasts and gun muzzle blasts and the progress of modeling the muzzle blast-structure interaction. The main focus of this thesis covers an investigation of different numerical and analytical solutions to a simple aerospace structure subjected to blast pressure. The thesis finally presents a tool that creates finite element loads utilizing muzzle blast scaling methods. This tool reduces modeling complexity and the need for multiple domains such as coupled computational fluid dynamics and finite element models by coupling blast scaling methods to a finite element model. / Master of Science / {Numerical integration methods have helped solve many complex problems in engineering and science due to their ability to solve non-linear equations that describe many phenomena. These methods are beneficial because of how well they lend to programming into a computer, and their impact has grown with the increases in computing power. In this thesis, ``modeling and simulation" refers to the characterization and prediction of an event's outcome through the use of computers and numerical techniques. Modeling and simulation play important roles in studying the effects of blast waves in many areas of engineering research such as aerospace, biomedical, naval, and civil. Their capability to predict the outcome of the interaction of a blast wave to vehicle structures, buildings, bridges, or even the human body while requiring limited experimental data has the chance to benefit a wide area of engineering problems. This thesis reviews fundamental concepts of blast waves, explosives, and research that has applied blast loading in modeling and simulation. This thesis describes the complexity of modeling an axially symmetric blast wave interaction by comparing the numerical and theoretical response blast loaded structure.
82

Accurate Numerical Methods for Wave propagation Problems

Sylvendahl, Anton, Tralla, Truls January 2024 (has links)
Wave propagation is a one of the most studied phenomenons in history due to the variety of applications such as quantum mechanics, electrodynamics and acoustics. In this thesis, the possibilities of improving numerical methods for solving the wave equation will be studied. More specifically, the dispersion relation will be used as a focal point. Generally there is a difference between the dispersion relation in the numerical solution and the analytic solution and the aim will be to decrease this difference and study the consequences. The numerical method that will be used and improved is the finite difference method (FDM). A dispersion relation for the numerical scheme will be derived including parameters from the spatial discretisation. These parameters will be optimised with the gradient descent method while retaining the second order accuracy of the derivative approximation. Performance is tested with numerical examples and the method of optimising for improved dispersion relation is proved to be successful. The optimised second order accurate schemes outperforms the standard second order accurate method in all simulated examples. When comparing the optimised stencil with the equally computationally expensive fourth order accurate method the optimised stencil performs better for sparse grids, especially when the spatial variation in the solution is high. For finer grids the fourth order accurate method quickly achieves smaller errors and is therefore preferable.
83

The Numerical Investigation of the Effects of Sand Ingestion on Compressor Blade Erosion

Cagdas, Taha Irfan 10 January 2024 (has links)
The performance of aircraft engines can be significantly affected by the variety of foreign particles that are mixed into the air while operating under miscellaneous conditions. In particular, aircraft engines that operate in sandy or dusty conditions may fail within minutes of exposure to particle-laden flow due to foreign particle deposition on hot section components or erosion occurring on the compressor and turbine blades. For these reasons, the effect of sand ingestion on erosion, which may occur in the turbine and compressor blades, was studied in this master's thesis. In this master's thesis, the effect of sand ingestion on erosion on the M250 turboshaft engine's compressor blades will be investigated with the aid of numerical methods. In this study, we used the OpenFOAM software to solve the multiphase flow problem from the standpoint of finite control methods and the Eulerian-Lagrangian framework. The initial sand distribution conditions were taken from the Ph.D. thesis written by Olshefski, K. T. (2023) [1]. The compressor blade was modeled as 2D, which has a NACA 6510 profile shape, with a chord length of 63 mm. The results show that the leading edge and the suction side of the compressor, i.e. the upper half of the compressor, eroded more compared to the trailing edge, and the pressure side. Results also show that as the sand particle distribution becomes non-uniform the most eroded region shifts toward the trailing edge. In addition, for varying angles of attack, the region where the erosion occurs alters periodically. We observed that as the angle of attack increases, the eroded region shifts toward the trailing edge, but when the angle of attack is kept increasing the eroded region shifts back to the leading edge again. In conclusion, the non-uniformity of sand particle loading has a strong effect on the determination of the eroded regions. Furthermore, the variation of the angle of attack has a huge role in both the determination of eroded regions and the amount of eroded material. / Master of Science / In this master's thesis, the effect of sand ingestion on compressor blade erosion was investigated with the help of numerical methods. The compressor is one of the vital parts of air-breathing engines such as turboshaft, turbofan, turbojet, and turboprop engines. Therefore, the erosion on the compressor blades may cause pressure surges, which could cause severe problems in the operation of aircraft or airplanes operating under dusty conditions. Historically, it is reported that a TransAmerican aircraft propelled by Alison T-56 engines lost two of its four engines after 3 to 4 minutes of exposure to volcanic ash while flying over Mt. St. Helens in 1980. Another example of the effects of sand ingestion is an MV-22 Osprey crash that happened during a training exercise in Hawaii, claiming the lives of two US Marines and injuring twenty other personnel in 2015. It was attributed that the cause of the fatal accident was the ingestion of dust that caused engine failure. Therefore, our intention in studying this field is to have an understanding of the regions of compressor blades that are vulnerable to erosion. In this master's thesis, numerical methods based on the finite volume method were used to obtain numerical solutions to estimate erosion on the compressor blade by utilizing OpenFOAM. We would like to recommend a nice OpenFOAM tutorial for those who are interested in applying numerical methods using OpenFOAM, taught by Jozsef Nagy accessible on YouTube, https://www.youtube.com/@OpenFOAMJozsefNagy. Also, for creating geometry and mesh generation of an airfoil for the use of OpenFOAM, we would like to recommend the tutorial presented by Ali Ikhsanul, accessible on YouTube via this link https://www.youtube.com/@aliikhsanul7982. These tutorial videos could help those who are interested in Openfoam but do not have much experience with Openfoam. The work in this master's thesis indicates that the leading edge of the compressor blade is more prone to be eroded than the trailing edge. In addition, it is shown that the eroded region distribution is highly dependent on the angle of attack of sand particles.
84

Mesh free methods for differential models in financial mathematics

Sidahmed, Abdelmgid Osman Mohammed January 2011 (has links)
Many problems in financial world are being modeled by means of differential equation. These problems are time dependent, highly nonlinear, stochastic and heavily depend on the previous history of time. A variety of financial products exists in the market, such as forwards, futures, swaps and options. Our main focus in this thesis is to use the numerical analysis tools to solve some option pricing problems. Depending upon the inter-relationship of the financial derivatives, the dimension of the associated problem increases drastically and hence conventional methods (for example, the finite difference methods or finite element methods) for solving them do not provide satisfactory results. To resolve this issue, we use a special class of numerical methods, namely, the mesh free methods. These methods are often better suited to cope with changes in the geometry of the domain of interest than classical discretization techniques. In this thesis, we apply these methods to solve problems that price standard and non-standard options. We then extend the proposed approach to solve Heston' volatility model. The methods in each of these cases are analyzed for stability and thorough comparative numerical results are provided.
85

Mesh free methods for differential models in financial mathematics

Sidahmed, Abdelmgid Osman Mohammed January 2011 (has links)
Many problems in financial world are being modeled by means of differential equation. These problems are time dependent, highly nonlinear, stochastic and heavily depend on the previous history of time. A variety of financial products exists in the market, such as forwards, futures, swaps and options. Our main focus in this thesis is to use the numerical analysis tools to solve some option pricing problems. Depending upon the inter-relationship of the financial derivatives, the dimension of the associated problem increases drastically and hence conventional methods (for example, the finite difference methods or finite element methods) for solving them do not provide satisfactory results. To resolve this issue, we use a special class of numerical methods, namely, the mesh free methods. These methods are often better suited to cope with changes in the geometry of the domain of interest than classical discretization techniques. In this thesis, we apply these methods to solve problems that price standard and non-standard options. We then extend the proposed approach to solve Heston' volatility model. The methods in each of these cases are analyzed for stability and thorough comparative numerical results are provided.
86

Mesh free methods for differential models in financial mathematics

Sidahmed, Abdelmgid Osman Mohammed January 2011 (has links)
Philosophiae Doctor - PhD / Many problems in financial world are being modeled by means of differential equation. These problems are time dependent, highly nonlinear, stochastic and heavily depend on the previous history of time. A variety of financial products exists in the market, such as forwards, futures, swaps and options. Our main focus in this thesis is to use the numerical analysis tools to solve some option pricing problems. Depending upon the inter-relationship of the financial derivatives, the dimension of the associated problem increases drastically and hence conventional methods (for example, the finite difference methods or finite element methods) for solving them do not provide satisfactory results. To resolve this issue, we use a special class of numerical methods, namely, the mesh free methods. These methods are often better suited to cope with changes in the geometry of the domain of interest than classical discretization techniques. In this thesis, we apply these methods to solve problems that price standard and non-standard options. We then extend the proposed approach to solve Heston' volatility model. The methods in each of these cases are analyzed for stability and thorough comparative numerical results are provided. / South Africa
87

Mesh Free Methods for Differential Models In Financial Mathematics

Sidahmed, Abdelmgid Osman Mohammed January 2011 (has links)
Philosophiae Doctor - PhD / Many problems in financial world are being modeled by means of differential equation. These problems are time dependent, highly nonlinear, stochastic and heavily depend on the previous history of time. A variety of financial products exists in the market, such as forwards, futures, swaps and options. Our main focus in this thesis is to use the numerical analysis tools to solve some option pricing problems. Depending upon the inter-relationship of the financial derivatives, the dimension of the associated problem increases drastically and hence conventional methods (for example, the finite difference methods or finite element methods) for solving them do not provide satisfactory results. To resolve this issue, we use a special class of numerical methods, namely, the mesh free methods. These methods are often better suited to cope with changes in the geometry of the domain of interest than classical discretization techniques. In this thesis, we apply these methods to solve problems that price standard and non-standard options. We then extend the proposed approach to solve Heston's volatility model. The methods in each of these cases are analyzed for stability and thorough comparative numerical results are provided.
88

Simulating the signature of starspots in stellar oscillations

Papini, Emanuele 28 July 2015 (has links)
Wie seit schon einigen Jahrzehnten bekannt ist, werden akustische Oszillationen durch stellare Aktivität beeinflusst. Die globalen akustischen Moden in der Sonne weisen eine Variation mit dem 11-jährigen Sonnenzyklus auf. Ein ähnliches Phänomen konnte auch in anderen Sternen mit Hilfe von Asteroseismologie nachgewiesen werden. In dieser Arbeit erforsche ich den Einfluss von großen Sternflecken auf globale Oszillationen mit niedrigem Grad ℓ. Als wichtigstes Werkzeug benutze ich hierfür den GLASS Kode, der die Ausbreitung von linearen akustischen Wellen im Sterninneren in 3D simuliert. Zunächst habe ich das Problem der konvektiven Stabilisierung betrachtet, welches bei jedem linearen Oszillationskode im Zeitbereich auftritt. Ich präsentiere eine allgemeine Methode um konvektiv stabile Hintergrundsmodelle für ein vorgegebenes Sternmodell zu erzeugen. Dabei werden wichtige Eigenschaften des ursprünglichen Modells beibehalten, beispielsweise das hydrostatische Gleichgewicht. Ich schlage einen störungstheoretischen Ansatz vor, um das akustische Wellenfeld in dem ursprünglichen instabilen Sternmodell näherungsweise zu erlangen. Tests zeigen, dass für Moden mit niedrigem Grad ℓ und einer Frequenz um 3 mHz die korrigierten Frequenzen mit einer Genauigkeit von 1 μHz mit den exakten Werten übereinstimmen. Zweitens habe ich mit Hilfe des GLASS Kodes den Einfluss einer am Nordpol des Sterns lokalisierten Störung der Schallgeschwindigkeit auf radiale, dipolare und quadrupolare Oszillationsmoden untersucht. Diese Studie zeigt auf, dass die axialsymmetrischen Moden dadurch am stärksten beeinflusst werden und im Falle von großen Sternflecken können ihre Frequenzen nicht mit der linearen Theorie berechnet werden. Die Form der Eigenfunktionen der Moden weicht von reinen Kugelflächenfunktionen ab und werden mit Kugelflächenfunktionen mit unterschiedlichem Grad ℓ vermischt. Dies könnte die korrekte Identifikation der Moden in der spektralen Leistungsdichte beeinflussen. Drittens habe ich den beobachtbaren Einfluss eines großen Sternflecks auf Moden mit Grad ℓ betrachtet. Im Falle einer aktiven Region, die mit dem Stern rotiert (und sich nicht am Pol befindet), ist die Störung nicht stabil, wenn sie in einem Inertialsystem betrachtet wird. Der kombinierte Einfluss von Rotation und Sternfleck veranlasst jede Mode, in der beobachteten spektralen Leistungsdichte als (2ℓ + 1)² Peaks aufzutreten. Die Einhüllende der spektralen Leistungsdichte eines Multipletts ist also komplex und hängt von dem Breitengrad ab, wo sich die aktive Region befindet, und vom Inklinationswinkel des Sterns. Ich berechne die spektrale Leistungsdichte für einige Beispiele sowohl mit Störungstheorie als auch mit Hilfe von GLASS. Diese Arbeit soll dazu beitragen, die spektrale Leistungsdichte von oszillierenden Sternen, die Sternflecken aufweisen, zu interpretieren.
89

Use of microcomputers in mathematics in Hong Kong higher education

Pong, Tak-Yun G. January 1988 (has links)
Since the innovation of computers some 40 years ago and the introduction of microcomputers in 1975, computers are playing an active role in education processes and altering the pattern of interaction between teacher and student in the classroom. Computer assisted learning has been seen as a revolution in education. In this research, the author has studied the impact of using microcomputers on mathematical education, particularly at the Hong Kong tertiary level, in different perspectives. Two computer software packages have been developed on the microcomputer. The consideration of the topic to be used in the computer assisted learning was arrived at in earlier surveys with students who thought that computers could give very accurate solutions to calculations. The two software packages, demonstrating on the spot the error that would be incurred by the computer, have been used by the students. They are both interactive and make use of the advantages of the microcomputer's functions over other teaching media, such as graphics facility and random number generator, to draw to the students' attention awareness of errors that may be obtained using computers in numerical solutions. Much emphasis is put on the significance and effectiveness of using computer packages in learning and teaching. Measurements are based on questionnaires, conversations with students, and tests on content material after the packages have been used. Feedback and subjective opinion of using computers in mathematical education have also been obtained from both students and other teachers. The research then attempts to examine the suitability of applying computer assisted learning in Hong Kong education sectors. Some studies on the comments made by students who participated in the learning process are undertaken. The successes and failures in terms of student accomplishment and interest in the subject area as a result of using a software package is described. Suggestions and recommendations are given in the concluding chapter.
90

Efficient numerical methods for the solution of coupled multiphysics problems

Asner, Liya January 2014 (has links)
Multiphysics systems with interface coupling are used to model a variety of physical phenomena, such as arterial blood flow, air flow around aeroplane wings, or interactions between surface and ground water flows. Numerical methods enable the practical application of these models through computer simulations. Specifically a high level of detail and accuracy is achieved in finite element methods by discretisations which use extremely large numbers of degrees of freedom, rendering the solution process challenging from the computational perspective. In this thesis we address this challenge by developing a twofold strategy for improving the efficiency of standard finite element coupled solvers. First, we propose to solve a monolithic coupled problem using block-preconditioned GMRES with a new Schur complement approximation. This results in a modular and robust method which significantly reduces the computational cost of solving the system. In particular, numerical tests show mesh-independent convergence of the solver for all the considered problems, suggesting that the method is well-suited to solving large-scale coupled systems. Second, we derive an adjoint-based formula for goal-oriented a posteriori error estimation, which leads to a time-space mesh refinement strategy. The strategy produces a mesh tailored to a given problem and quantity of interest. The monolithic formulation of the coupled problem allows us to obtain expressions for the error in the Lagrange multiplier, which often represents a physically relevant quantity, such as the normal stress on the interface between the problem components. This adaptive refinement technique provides an effective tool for controlling the error in the quantity of interest and/or the size of the discrete system, which may be limited by the available computational resources. The solver and the mesh refinement strategy are both successfully employed to solve a coupled Stokes-Darcy-Stokes problem modelling flow through a cartridge filter.

Page generated in 0.1148 seconds