• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 46
  • 43
  • 37
  • 14
  • 6
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 326
  • 326
  • 46
  • 43
  • 42
  • 42
  • 38
  • 35
  • 29
  • 26
  • 25
  • 25
  • 22
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Proposta e análise de novos sistemas de ancoragem para End Fittings de Risers flexíveis

Lorio, Diego Andrés January 2016 (has links)
O trabalho apresentado tem como finalidade analisar os sistemas de ancoragem utilizados na fabricação de End Fittings (EF), através de ensaios de dois sistemas de ancoragem alternativos aos utilizados atualmente na indústria. Além disso, é apresentado o desenvolvimento de um modelo de elementos finitos (MEF) que permite a reprodução do comportamento durante o processo de pullout da ancoragem com melhor desempenho. A caracterização dos materiais envolvidos no sistema de ancoragem foi necessária para o desenvolvimento do modelo numérico. Desta forma, o modelo numérico conta com as propriedades elásticas e plásticas dos materiais, fator que influencia o comportamento do sistema assim como os valores de carga necessários para o arrancamento. A comparação das ancoragens propostas foi realizada a partir dos valores de força obtidos por meio de um teste de arrancamento, chamado de pullout. Para isto, arames da armadura de tração de uma linha flowline de 2,5 polegadas foram conformados de acordo à geometria das ancoragens propostas e embebidas em resina epóxi tentando, desta forma, representar de forma simplificada parte do sistema de ancoragem utilizado nos EF. O desempenho das ancoragens foi analisado a partir das curvas de força em função do deslocamento, nas quais se analisou a força máxima de pullout (força máxima de arrancamento), o deslocamento para força máxima de pullout e o valor de rigidez do sistema. Finalmente depois de selecionada a ancoragem com melhor desempenho, os valores experimentais foram comparados com os valores obtidos do modelo numérico, mostrando uma boa aproximação com valores de erro relativo para a força máxima de pullout e rigidez de -1% e 8%, respectivamente. Por fim, propõe-se como trabalho futuro a continuação nos estudos experimentais de pullout com o objetivo de aprofundar o conhecimento sobre os parâmetros que mais influenciam nestes sistemas, através da utilização de novas geometrias e materiais, assim como a normalização do processo de preparação e ensaio das amostras. / The work aims to analyze the anchoring systems used in manufacturing of flexible pipe End Fittings (EF) through the tests of two alternative anchoring systems different of the currently used in the industry. In addition, it is presented the development of a finite element model (MEF) that allows to reproduce the behavior during the pullout process of the anchoring system with the better performance. The characterization of the materials involved in the anchoring system was necessary for the development of the numerical model. In this way, the numerical model include the elastic and plastic properties of materials, factor that influence the behavior of the system as well as the force values needed for the pullout. The comparison of the proposed anchoring systems was performed from the force values obtained through a pullout test. For this, the armor wires of a flowline flexible pipe with a bore of 2.5-inch were conformed according the geometry of the anchoring systems proposed and then were fixed in epoxy resin, trying in this way to represent a simplified form of the anchoring system used in EF. The performance of the anchoring systems was analyzed from the force-displacement curves. The maximum pullout force, the offset for maximum strength of pullout and the stiffness value of the system were used for the analysis. Finally, after selected the anchoring system with better performance, the experimental values were compared with the values obtained from the numerical model. The results showed a good approximation, with a relative error for the maximum pullout force and stiffness of -1% and 8% respectively. As proposal for future works, the author proposes to continue with the experimental studies of pullout in order to enhance the knowledge about the influential parameters in these systems, through the use of new geometries and materials, as well as the standardization of the test samples preparation.
72

Modelagem numérica do comportamento de derrames de óleo como método de gestão ambiental, em planos de contingência, aplicada ao canal de São Sebastião (SP). / Numerical model of oil spill as an environmental management method in contingency plan, applied to São Sebastião channel (SP).

Marcelo Rodrigues 10 September 2009 (has links)
A aplicação de modelagem numérica para análise acidentes envolvendo derrames de óleo se tornou uma das principais ferramentas para o estudo deste tipo de impacto ambiental, auxiliando na previsão do deslocamento e permitindo maior eficácia nas formas de atuação nos processos de contingência do deslocamento da mancha. Estes pressupostos dão impulso ao desenvolvimento de pesquisa aplicada neste caso específico de estudo, ou seja, de modelação hidrodinâmica no Canal de São Sebastião em vários cenários através da utilização do módulo hidrodinâmico do software MIKE 21 da DHI, e da avaliação dos resultados gerados pela simulação através de comparação com o acompanhamento de eventos reais de espalhamento de manchas de óleo em acidentes antigos e com uma imagem de satélite simultânea a um derramamento. Foram avaliados sete eventos distintos onde ocorreram vazamentos de óleo no Canal de São Sebastião e a eles comparados às simulações hidrodinâmicas geradas pelo modelo em diferentes condições ambientais. Os resultados obtidos mostram que o deslocamento da mancha de óleo está condicionado preferencialmente pelo regime de ventos, estando bem correlacionados com os padrões hidrodinâmicos encontrados. A partir das diferentes situações apresentadas nas simulações, é possível estimar o sentido do deslocamento em acidentes futuros, dando subsídios nas ações de contenção dos efeitos deste tipo de acidente. / The application of numeric models for analysis of oil spill in the coastal environments becomes one of the most important ways to understand the behavior of the oil in this case of impact, giving subsides to the prediction of the displacement of the patches and allowing best efficiency in the control of the extension of the impact agent. These assumptions give thrust to the development of applied research in this work, which is defined by the knowledge of the different hydrodynamic conditions that compose the oceanographic structure in the São Sebastião Channel, by the utilization of the software MIKE 21 of the DHI (Danish Hydrodynamic Institute) and the comparison with historic cases of spill described in the literature. A satellite image was processed showing the real conditions of the spill, considering the physic-chemical changes and compared with the other data improve the evaluation process. Seven oil spills were studied and compared to the simulations, and there were generated six scenarios in different environmental conditions. The results show that the most important forcing of the environmental conditions of the oil patch is the wind, and the simulations agree well with the real processes. The hydrodynamic module of Mike 21 reveals an applicable tool for this kind of studies, giving sufficient information to reduce the impact of oil spill improving the oil spill contention.
73

NUMERICAL MODELING AND ISOTOPE TRACERS TO INVESTIGATE KARST BIOGEOCHEMISTRY AND TRANSPORT PROCESSES

Husic, Admin 01 January 2018 (has links)
This dissertation investigated the physical and biogeochemical processes affecting the source, fate, and transport of sediment, carbon, and nitrogen within a highly-coupled fluviokarst system. Elemental and isotopic datasets were collected at surface and subsurface locations for both dissolved and particulate contaminant phases, new methodology regarding data collection was presented to the karst research community, an in-cave sediment transport model coupling physical transport with elemental and isotopic mass balances of carbon and nitrogen was formulated, pathway and process control on nitrate leaching from agricultural karst watersheds was assessed, and nitrate mobilization and fractionation were modeled using high frequency storm sampling and long-term low-flow sampling. Data and modeling results indicate that phreatic karst conduits are transport-limited during hydrologic events and experience subsurface deposition of labile, storm-injected sediment which is subsequently decomposed by heterotrophic bacteria. An estimated 30% of the organic carbon associated with sediment is decomposed during transport in the subsurface karst. Concentrations of nitrate in subsurface waters are consistently 50% greater than surface inputs suggesting an additional source of subsurface nitrate. Further modeling of nitrate leaching indicates that quick-flow water sources dilute nitrate concentrations and slow-flow (epikarst and phreatic) sources account for approximately 90% of downstream nitrate delivery. Field sampling of extreme events highlights the physical transport and delayed release of high nitrate concentrations by intermediate karst pathways, which is likely associated with a transition from epikarst to soil drainage during storm recession. Modeling of sediment carbon and nitrogen within the karst SFGL supports the idea that the cave sediment bed experiences hot spots and hot moments of biogeochemical activity. Sediment nitrogen tracing data show a significant increase in δ15NSed at the spring outlet relative to karst inputs indicating the potential for isotope fractionation effects during dissolved N uptake by cave biota. Dissolved nitrogen stable isotopic composition shows a significant downstream decrease in δ15NNO3 within the conduit, likely associated with nitrification. Data and modeling results of sediment, carbon, and nitrogen emphasize the role of multiple pathways, turbulent transport, and in-conduit transformations in controlling contaminant flux from karst watersheds.
74

Nonlinear analysis of pile driving and ground vibrations in saturated cohesive soils using the finite element method

Serdaroglu, Mehmet Serdar 01 December 2010 (has links)
In urban areas, vibrations generated by pile driving often affect the neighboring properties vulnerable to ground shaking. These vibrations may cause damage to surrounding structures either by shaking the ground or by causing settlement of the soil beneath foundations in the proximity of pile driving. It is important to distinguish between the conditions under which the vibrations will cause damage and those under which vibrations are tolerable. The numerical studies on the analysis of pile driving have mostly focused on assessing the driving efficiency and the bearing capacity of dynamically loaded piles. A limited number of studies included the study of ground vibrations due to pile driving and its effects on adjacent structures. However, the factors affecting the ground vibrations in soils such as the nonlinear constitutive behavior of soil, soil-pile interaction and penetration depth of the pile have not been clearly identified. The objective of this research is to implement a numerical method to simulate dynamic loading of a single pile, and study the factors influencing the stress wave propagation in the soil surrounding the pile. The thesis is comprised of two main analyses: (1) the static analysis of a pile in which the phenomenon of static consolidation is studied, and (2) the dynamic analysis of a pile in which pile driving and ground vibrations are studied. In the static analysis, the load capacity of a single pile is investigated. The results from the finite element method are compared with widely recognized theoretical methods. The theoretical methods that are used to estimate the end bearing capacities are: (1) General Formula, (2) Vesic's Method, (3) Janbu's Method, (4) Meyerhof's Method, and (5) Coyle & Castello's Method. The estimation of skin friction resistance (shaft capacity) of single piles is performed using the (1) Alpha method, (2) Beta method, and (3) Lambda method. Two numerical applications are performed to predict the load capacity of single piles in normally consolidated clays. It is observed that the model with no slippage at the interface predicts almost twice as much load capacity as the model with interface. In regards with the end bearing capacities, Coyle & Castello's method is found to be most conservative followed by the finite element method, the Janbu's method, the Meyerhof's method, and finally the Vesic's method. In respect to skin friction resistance, the finite element is found to be the most conservative method, followed by the Beta, the Lambda, and the Alpha method. In the dynamic analysis, the amplitudes of ground vibrations are investigated based on the variation of: (1) the soil type, (2) the pile embedment length and (3) the released hammer energy. In the first analysis, five types of soils - loose and dense sands and, soft, medium stiff, and stiff clays - are modeled. The highest vibration amplitude is calculated for the loose sand with a peak particle velocity (PPV) of 10.0 mm/s followed by the dense sand with a PPV of around 4.0 mm/s. Among the clay types, the vibrations are higher for the stiffer clay in the near field, which is 9 m (half a pile length) or less away from the pile. In the second analysis, three different embedment lengths - full, half, and quarter pile length - are modeled. It is found that the quarter embedded piles produce greater vibration amplitudes as compared to the half and fully embedded piles. Larger amplitudes of vibrations are encountered on the ground surface for shorter pile embedment lengths. In the third analysis, three different impact forces consisting of 2,000 kN (F), 6,000 kN (3F) and 10,000 kN (5F) are applied on the pile head. It is concluded that increase in hammer energy causes increase in the peak particle velocities.
75

Optimisation d’un capteur solaire double passe à air et estimation des échanges de chaleur paroi-fluide. / Optimization of a double pass solar collector and estimation of wall-fluid heat transfer.

Ndiaye, Mame Mor Diarra 17 December 2018 (has links)
Dans ce travail, on présente une étude des performances d’un capteur solaire plan double passe destiné à la production de l’air chaud permettant d’alimenter et d’améliorer les techniques de séchage. On analyse les cas d’un absorbeur avec et sans ailettes.Les modèles théoriques relatifs au capteur à air double passe avec et sans ailettes ont été établis et résolus numériquement à l’aide de codes élaborés en Fortran pour obtenir une approche globale de leur comportement ou alors à l’aide de Comsol multiphysique pour une étude plus locale. Un dispositif expérimental a été conçu pour valider les résultats obtenus numériquement. Une des particularités du capteur mis au point au laboratoire est relative à son système d'isolation. À cet effet, un matériau local composé de tiges de mil broyées (biosourcé) a été réalisé dans le but d’augmenter les performances du capteur solaire. Les propriétés des matériaux biosourcés utilisés pour l’isolation ont été identifiées à l’aide de moyens existant au laboratoire. Une comparaison des températures mesurées et calculées a permis de valider les deux approches expérimentale et numérique. L’évaluation des performances a montré une forte influence du débit et du rayonnement solaire sur le rendement énergétique du capteur solaire double passe avec ailettes. L’approche globale des bilans thermique au sein du capteur solaire repose principalement sur une bonne connaissance des coefficients d’échange entre le fluide caloporteur et l’absorbeur, un travail d’estimation de ces coefficients d’échange convectif est proposé dans la dernière partie de ce travail.Mots clés : Capteur solaire, double passe, tige de mil broyée, matériau biosourcé, modélisation numérique, expérimentale, performance. / In this work, we present a study of the performance of a double pass flat solar collector for the production of hot air to supply and improve drying techniques. The cases of an absorber with and without fins are analyzed.Theoretical models for the double pass solar collector with and without fins have been established and solved numerically using codes developed in Fortran to obtain a global approach. Comsol Multi-physics code is used for a more local study. An experimental device has been designed to validate the results obtained numerically. One of the particularities of the solar collector developed in the laboratory is its insulation system. For this, a local bio-sourced material composed of crushed millet stems has been developed to increase the performance of the solar collector. The properties of the bio-sourced materials used for insulation were characterized by using available laboratory testing model. A comparison of the measured and calculated temperatures validated both the experimental and numerical approaches. The performance evaluation showed a strong influence of the flow rate and solar radiation on the energy efficiency of the double pass finned solar collector. The global approach to heat balances within the solar collector is mainly based on the heat transfer coefficients between the fluid and the absorber. An estimation of these coefficients is proposed in the last part of this work.Keywords: Solar collector, double pass, millet rod crushed, biosourced material, numerical modeling, experiment, performance.
76

Hydrodynamic Impacts of Tidal Lagoons in the Upper Bay of Fundy

Cousineau, Julien 16 July 2012 (has links)
Among sources of renewable energy, development of tidal energy has traditionally been plagued by relatively high costs and limited availability of sites with sufficiently high tidal amplitudes or flow velocities. However, many recent technology developments and improvements, both in design (e.g. dynamic tidal power, tidal lagoons) and turbine technology (e.g. new axial turbines, crossflow turbines), showed that the economic and environmental costs may be brought down to competitive levels comparing to other conventional energy sources. It has long been identified that the Bay of Fundy is one of the world’s premier locations for the development of tidal power generating systems, since it has some of the world’s largest tidal ranges. Consequently, several proposals have been made in the recent years to find economical ways to harness the power of tides. Presently, there is considerable interest in installing tidal lagoons in the Bay of Fundy. The lagoon concept involves temporarily storing seawater behind an impoundment dike and generating power by gradually releasing the impounded seawater through conventional low-head hydroelectric turbines. A tidal lagoon will inherently modify the tides and tidal currents regime in the vicinity of the lagoon, and possibly induce effects that may be felt throughout the entire Bay of Fundy. The nature of these hydrodynamic impacts will likely depend on the size of the tidal lagoon, its location, and its method of operation. Any changes in the tidal hydrodynamics caused by a tidal lagoon may also impact on the transport of sediments throughout the region and upset ecosystems that are well adapted to existing conditions. The scale and character of the potential hydrodynamic impacts due to tidal lagoons operating in the Bay of Fundy have not been previously investigated. The present study endeavours to investigate these potential impacts to help the development of sustainable, science-based policies for the management and development of clean energy for future generations. After outlining fundamental aspects of tidal power projects taken in consideration in the Bay of Fundy, an analysis of present knowledge on tidal lagoons was conducted in order to provide a focus for subsequent investigations. Hydrodynamic modeling was used to quantify any of the potential hydrodynamic changes induced in the Bay of Fundy due to the presence of tidal lagoons. In the last part of the thesis, new relationships were derived in order to describe the amount of energy removed from tidal lagoons associated with its hydrodynamic impacts.
77

Modeling a run-around heat and moisture exchanger using two counter/cross flow exchangers

Vali, Alireza 29 June 2009
In this study, a numerical model is developed for determining coupled heat and moisture transfer in a run-around membrane energy exchanger (RAMEE) using two counter/cross flow exchangers and with a salt solution of MgCl2 as the coupling fluid. The counter/cross flow exchanger is a counter-flow exchanger with cross-flow inlet and outlet headers. The model is two-dimensional, steady-state and based on the physical principles of conservation of momentum, energy, and mass. The finite difference method is used in this model to discretize the governing equations.<p> The heat transfer model is validated with effectiveness correlations in the literature. It is shown that the difference between the numerical model and correlations is less than ¡À2% and ¡À2.5% for heat exchangers and run around heat exchangers (RAHE), respectively. The simultaneous heat and moisture transfer model is validated with data from another model and experiments. The inter-model comparison shows a difference of less than 1%. The experimental validation shows an average discrepancy of 1% to 17% between the experimental and numerical data for overall total effectiveness. At lower NTUs the numerical and experimental results show better agreement (e.g. within 1-4% at NTU=4).<p> The model for RAHE is used to develop new effectiveness correlations for the geometrically more complex counter/cross flow heat exchangers and RAHE systems. The correlations are developed to predict the response of the exchangers and overall system to the change of different design characteristics as it is determined by the model. Discrepancies between the simulated and correlated results are within ¡À2% for both the heat exchangers and the RAHE systems.<p> It is revealed by the model that the overall effectiveness of the counter/cross flow RAMEE depends on the entrance ratio (the ratio of the length of the inlet and outlet headers to the length of the exchanger, xi/x0), aspect ratio (the ratio of the height to the length of the exchanger, y0/x0), number of heat transfer units (NTU), heat capacity rate ratio (Cr*), number of mass transfer units (NTUm), and the mass flow rate ratio of pure salt in desiccant solution to dry air (m*). Beside these dimensionless parameters, the performance of the RAMEE system is affected by the liquid-air flow configuration and the operating inlet temperature and humidity.<p> This study concludes that the maximum effectiveness of the RAMEE system with two counter/cross flow exchangers occurs when NTU and NTUm are large (e.g. greater than 10). At any NTU, the overall effectiveness of the RAMEE system increases with Cr* until it reaches a maximum value when Cr*= . Increasing Cr* above causes the overall effectiveness to decrease slightly. Therefore, to achieve the maximum overall effectiveness of the system, Cr* must be close to . is a function of NTU and operating conditions e.g., with NTU=10, and under AHRI summer and winter operating conditions, respectively. The exchangers in the RAMEE system are needed to have a small aspect ratio (e.g. y0/x0<0.2) and small entrance ratio (e.g. xi/x0<0.1) to get the maximum overall effectiveness of a RAMEE system using two counter/cross flow exchangers. Such a RAMEE system has a total effectiveness 6% higher and 1.5% lower compared to the same cross-flow and counter-flow RAMEE, respectively (at NTU=10, Cr*¡Ö3, y0/x0=0.2 and xi/x0=0.1).
78

A numerical study of energy balances and flow planforms in earth's mantle with radioactive heating, the 660 km-depth phase boundary and continents

Sinha, Gunjan 13 July 2009
It is well established that the temperature gradients in the interiors of internally-heated mantle convection models are subadiabatic (e.g. Parmentier et al., 1994; Bunge et al., 1997, 2001). The subadiabatic gradients have been explained to arise due to a balance between vertical advection and internal heating, however, a detailed analysis of the energy balance in the subadiabatic regions has not been undertaken. In this research, I examine in detail the energy balance in a suite of two-dimensional convection calculations with mixed internal and basal heating, depth-dependent viscosity and continents. I find that there are three causes of subadiabatic gradients. One is the above-mentioned balance, which becomes significant when the ratio of internal heating to surface heat flux is large. The second mechanism involves the growth of the overshoot (maximum and minimum Temperatures along a geotherm) of the geotherm near the lower boundary where the dominant balance is between vertical and horizontal advection. The latter mechanism is significant even in relatively weakly internally heated calculations. For time-dependent calculations, I find that local secular cooling can be a dominant term in the energy equation and can lead to subadiabaticity. However, it does not show its signature on the shape of the time-averaged geotherm. I also compare the basal heat flux with parameterized calculations based on the temperature drop at the core-mantle boundary, calculated both with and without taking the subadiabatic gradient into account and I find a significantly improved fit with its inclusion.<p> I also explore a wide range of parameter space to investigate the dynamical interaction between effects due to surface boundary conditions representing continental and oceanic lithosphere and the endothermic phase boundary at 660 km-depth in two-dimensional Cartesian coordinate convection calculations. I find that phase boundary induced mantle layering is strongly affected by the wavelength of convective flows and mixed surface boundary conditions strongly increase the horizontal wavelength of convection. My study shows that for mixed cases the effects of the surface boundary conditions dominate the effects of the phase boundary. I show that the calculations with complete continental coverage have the most significantly decoupled lower and upper mantle flows and substantial thermal and mechanical layering. Unlike the free-slip case where the surface heat flux decreases substantially with increasing magnitude of the Clapeyron slope, surface heat flux is shown to be almost independent of the Clapeyron slope for mixed boundary condition cases. Although very different when not layered, models with free and mixed surfaces have very similar planforms with very large aspect ratio flows when run with large magnitudes of the Clapeyron slope. I also calculate the critical boundary layer Rayleigh number as a measure of the thermal resistance of the surface boundary layer. My results show that the thermal resistance in the oceanic and the continental regions of the mixed cases are similar to fully free and no-slip cases, respectively. I find that, even for purely basally heated models, the mantle becomes significantly subadiabatic in the presence of partial continental coverage. This is due to the significant horizontal advection of heat that occurs with very large aspect ratio convection cells.
79

Combined Numerical and Thermodynamic Analysis of Drop Imbibition Into an Axisymmetric Open Capillary

Ferdowsi, Poorya A. 21 August 2012 (has links)
This thesis presents an axisymmetric numerical model to simulate interfacial flows near a sharp corner, where contact line pinning occurs. The method has been used to analyze drop imbibition into a capillary. To evaluate the performance of the numerical method, for a liquid drop initially placed partially within a capillary, a thermodynamic model has also been developed, to predict equilibrium states. The first part of this thesis presents an axisymmetric VoF algorithm to simulate interfacial flows near a sharp corner. (1) A new method to exactly calculate the normals and curvatures of any circle with a radius as small as the grid size is presented. This method is a hybrid least squares height function technique which fits a discretized osculating circle to a curve, from which interface normals and curvature can be evaluated. (2) A novel technique for applying the contact angle boundary condition has been devised, based on the definition of an osculating circle near a solid phase. (3) A new flux volume construction technique is presented, which can be applied to any split advection scheme. Unlike the traditional approach where the flux volumes are assumed rectangular, the new flux volumes can be either trapezoidal or triangular. The new technique improves the accuracy and consistency of the advection scheme. (4) Explicit PLIC reconstruction expressions for axisymmetric coordinates have been derived. (5) Finally, a numerical treatment of VoF for contact line motion near a sharp corner is presented, base on the idea of contact line pinning and an edge contact angle. The second part of the thesis is on the imbibition of a drop into an open capillary. A thermodynamic analysis based on minimization of an interfacial surface energy function is presented to predict equilibrium configurations of drops. Based on the drop size compared to the hole size, the equilibrium contact angle, and the geometry of the capillary, the drop can be totally imbibed by the capillary, or may not wet the capillary at all. The thesis concludes with application of the numerical scheme to the same problem, to examine the dynamics of wetting or dewetting of a capillary. All of the simulations yield results that correspond to the equilibrium states predicted by the thermodynamic analysis, but offer additional insight on contact line motion and interface deformation near the capillary edge.
80

Modeling the transient behavior of a run-around heat and moisture exchanger system

Seyed Ahmadi, Mehran 25 November 2008
In this thesis, a numerical model for coupled heat and moisture transfer in a run around membrane energy exchanger (RAMEE) with a liquid desiccant as a coupling fluid is developed. The numerical model is two dimensional, transient and is formulated using the finite difference method with an implicit time discretization. The model for the case of only heat transfer for a single heat exchanger is compared to an available analytical solution and good agreement is obtained. It is shown that the discrepancy between the numerical and theoretical dimensionless bulk outlet temperature of the fluids is less than 4% during the transient period. The model is also validated for the case of simultaneous heat and moisture transfer using experimental data measured during the laboratory testing of a RAMEE system. The results for both sensible and latent effectiveness showed satisfactory agreement at different operating conditions. However, there are some discrepancies between the simulation and the experimental data during the transient times. It is proposed that these discrepancies may be due to experimental flow distribution problems within the exchanger. The maximum average absolute differences between the measured and simulated transient effectivenesses were 7.5% and 10.3% for summer and winter operating conditions, respectively.<p> The transient response of the RAMEE system for step changes in the inlet supply air temperature and humidity ratio is presented using the numerical model. In addition, the system quasi steady state operating conditions are predicted as the system approaches its steady state operating condition. The effect of various dimensionless parameters on the transient response is predicted separately. These included: the number of heat transfer units, thermal capacity ratio, heat loss/gain ratio, storage volume ratio and the normalized initial salt solution concentration. It is shown that the initial salt solution concentration and the storage volume of the salt solution have significant impacts on the transient response of the system and the heat loss/gain rates from/to the circulated fluid flow can change the system quasi steady effectiveness substantially. The detailed study of the transient performance of the RAMEE is useful to determine the transient response time of the system under different practical situations.

Page generated in 0.0647 seconds