Spelling suggestions: "subject:"anumerical programs"" "subject:"bnumerical programs""
1 |
Taking architecture and compiler into account in formal proofs of numerical programsNguyen, Thi Minh Tuyen 11 June 2012 (has links) (PDF)
On some recently developed architectures, a numerical program may give different answers depending on the execution hardware and the compilation. These discrepancies of the results come from the fact that each floating-point computation is calculated with different precisions. The goal of this thesis is to formally prove properties about numerical programs while taking the architecture and the compiler into account. In order to do that, we propose two different approaches. The first approach is to prove properties of floating-point programs that are true for multiple architectures and compilers. This approach states the rounding error of each floating-point computation whatever the environment and the compiler choices. It is implemented in the Frama-C platform for static analysis of C code. The second approach is to prove behavioral properties of numerical programs by analyzing their compiled assembly code. We focus on the issues and traps that may arise on floating-point computations. Direct analysis of the assembly code allows us to take into account architecture- or compiler-dependent features such as the possible use of extended precision registers. It is implemented above the Why platform for deductive verification
|
2 |
Logico-Numerical Verification Methods for Discrete and Hybrid Systems / Méthodes logico-numériques pour la vérification des systèmes discrets et hybridesSchrammel, Peter 18 October 2012 (has links)
Cette thèse étudie la vérification automatique de propriétés de sûreté de systèmes logico-numériques discrets ou hybrides. Ce sont des systèmes ayant des variables booléennes et numériques et des comportements discrets et continus. Notre approche est fondée sur l'analyse statique par interprétation abstraite. Nous adressons les problèmes suivants : les méthodes d'interprétation abstraite numériques exigent l'énumération des états booléens, et par conséquent, ils souffrent du probléme d'explosion d'espace d'états. En outre, il y a une perte de précision due à l'utilisation d'un opérateur d'élargissement afin de garantir la terminaison de l'analyse. Par ailleurs, nous voulons rendre les méthodes d'interprétation abstraite accessibles à des langages de simulation hybrides. Dans cette thèse, nous généralisons d'abord l'accélération abstraite, une méthode qui améliore la précision des invariants numériques inférés. Ensuite, nous montrons comment étendre l'accélération abstraite et l'itération de max-stratégies à des programmes logico-numériques, ce qui aide à améliorer le compromis entre l'efficacité et la précision. En ce qui concerne les systèmes hybrides, nous traduisons le langage de programmation synchrone et hybride Zelus vers les automates hybrides logico-numériques, et nous étendons les méthodes d'analyse logico-numérique aux systèmes hybrides. Enfin, nous avons mis en oeuvre les méthodes proposées dans un outil nommé ReaVer et nous fournissons des résultats expérimentaux. En conclusion, cette thèse propose une approche unifiée à la vérification de systèmes logico-numériques discrets et hybrides fondée sur l'interprétation abstraite qui est capable d'intégrer des méthodes d'interprétation abstraite numériques sophistiquées tout en améliorant le compromis entre l'efficacité et la précision. / This thesis studies the automatic verification of safety properties of logico-numerical discrete and hybrid systems. These systems have Boolean and numerical variables and exhibit discrete and continuous behavior. Our approach is based on static analysis using abstract interpretation. We address the following issues: Numerical abstract interpretation methods require the enumeration of the Boolean states, and hence, they suffer from the state space explosion problem. Moreover, there is a precision loss due to widening operators used to guarantee termination of the analysis. Furthermore, we want to make abstract interpretation-based analysis methods accessible to simulation languages for hybrid systems. In this thesis, we first generalize abstract acceleration, a method that improves the precision of the inferred numerical invariants. Then, we show how to extend abstract acceleration and max-strategy iteration to logico-numerical programs while improving the trade-off between efficiency and precision. Concerning hybrid systems, we translate the Zelus hybrid synchronous programming language to logico-numerical hybrid automata and extend logico-numerical analysis methods to hybrid systems. Finally, we implemented the proposed methods in ReaVer, a REActive System VERification tool, and provide experimental results. Concluding, this thesis proposes a unified approach to the verification of discrete and hybrid logico-numerical systems based on abstract interpretation, which is capable of integrating sophisticated numerical abstract interpretation methods while successfully trading precision for efficiency.
|
3 |
Taking architecture and compiler into account in formal proofs of numerical programs / Preuves formelles de programmes numériques en prenant en compte l'architecture et le compilateurNguyen, Thi Minh Tuyen 11 June 2012 (has links)
Sur des architectures récentes, un programme numérique peut donner des réponses différentes en fonction du hardware et du compilateur. Ces incohérences des résultats viennent du fait que chaque calcul en virgule flottante est effectué avec des précisions différentes. Le but de cette thèse est de prouver formellement des propriétés des programmes opérant sur des nombres flottants en prenant en compte l’architecture et le compilateur. Pour le faire, nous avons proposé deux approches différentes. La première approche est de prouver des propriétés des programmes en virgule flottante qui sont vraies sur plusieurs architectures et compilateurs. Cette approche ne considère que les erreurs d’arrondi qui doivent être validées quels que soient l’environnement matériel et le choix du compilateur. Elle est implantée dans la plate-forme Frama-C pour l’analyse statique de code C. La deuxième approche consiste à prouver des propriétés des programmes en analysant leur code assembleur. Nous nous concentrons sur des problèmes et des pièges qui apparaissent sur des calculs en virgule flottante. L’analyse directe du code assembleur nous permet de considérer des caratéristiques dépendant de l’architecture ou du compilateur telle que l’utilisation des registres en précision étendue. Cette approche est implantée comme une sur-couche de la plate-forme Why pour la vérification déductive. / On some recently developed architectures, a numerical program may give different answers depending on the execution hardware and the compilation. These discrepancies of the results come from the fact that each floating-point computation is calculated with different precisions. The goal of this thesis is to formally prove properties about numerical programs while taking the architecture and the compiler into account. In order to do that, we propose two different approaches. The first approach is to prove properties of floating-point programs that are true for multiple architectures and compilers. This approach states the rounding error of each floating-point computation whatever the environment and the compiler choices. It is implemented in the Frama-C platform for static analysis of C code. The second approach is to prove behavioral properties of numerical programs by analyzing their compiled assembly code. We focus on the issues and traps that may arise on floating-point computations. Direct analysis of the assembly code allows us to take into account architecture- or compiler-dependent features such as the possible use of extended precision registers. It is implemented above the Why platform for deductive verification
|
Page generated in 0.0642 seconds