• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Amyotrophic Lateral Sclerosis 8 Mutant VAPB-P56S Causes a Nuclear Envelope and Nuclear Pore Defect

Chalhoub, Antonious 23 August 2012 (has links)
A P56S mutation in the VAPB MSP domain is linked to adult-onset amyotrophic lateral sclerosis 8. The objective of this study is to characterize the functional role of VAPB in transport of NE and NPC proteins from the ER to the NE. Over-expression of VAPB-P56S blocked the transport of nucleoporins (Nups) and NE proteins, resulting in their sequestration in dilated cytoplasmic membranes. Simultaneous overexpression of the FFAT motif (two phenylalanines in an acidic track) antagonizes mutant VAPB effects and restores transport to the NE. VAPB function is required for transport to the NE because knockdown of endogenous VAPB recapitulates this phenotype. Moreover, the compartment in which Nups and NE proteins are sequestered and retained was identified as ER-Golgi intermediate compartment (ERGIC). Moreover, a defect in the transport of NE and NPC proteins attenuates nucleocytoplasmic shuttling of the glucocorticoid receptor (GR). Further, VAPB-P56S which is only soluble in SDS was solubilized in the Triton-X-100 fraction similar to VAPB-WT upon co-transfection with the FFAT motif suggesting that FFAT interacts with the insoluble VAPB-P56S protein changing its biophysical properties.
2

The Amyotrophic Lateral Sclerosis 8 Mutant VAPB-P56S Causes a Nuclear Envelope and Nuclear Pore Defect

Chalhoub, Antonious 23 August 2012 (has links)
A P56S mutation in the VAPB MSP domain is linked to adult-onset amyotrophic lateral sclerosis 8. The objective of this study is to characterize the functional role of VAPB in transport of NE and NPC proteins from the ER to the NE. Over-expression of VAPB-P56S blocked the transport of nucleoporins (Nups) and NE proteins, resulting in their sequestration in dilated cytoplasmic membranes. Simultaneous overexpression of the FFAT motif (two phenylalanines in an acidic track) antagonizes mutant VAPB effects and restores transport to the NE. VAPB function is required for transport to the NE because knockdown of endogenous VAPB recapitulates this phenotype. Moreover, the compartment in which Nups and NE proteins are sequestered and retained was identified as ER-Golgi intermediate compartment (ERGIC). Moreover, a defect in the transport of NE and NPC proteins attenuates nucleocytoplasmic shuttling of the glucocorticoid receptor (GR). Further, VAPB-P56S which is only soluble in SDS was solubilized in the Triton-X-100 fraction similar to VAPB-WT upon co-transfection with the FFAT motif suggesting that FFAT interacts with the insoluble VAPB-P56S protein changing its biophysical properties.
3

The Amyotrophic Lateral Sclerosis 8 Mutant VAPB-P56S Causes a Nuclear Envelope and Nuclear Pore Defect

Chalhoub, Antonious January 2012 (has links)
A P56S mutation in the VAPB MSP domain is linked to adult-onset amyotrophic lateral sclerosis 8. The objective of this study is to characterize the functional role of VAPB in transport of NE and NPC proteins from the ER to the NE. Over-expression of VAPB-P56S blocked the transport of nucleoporins (Nups) and NE proteins, resulting in their sequestration in dilated cytoplasmic membranes. Simultaneous overexpression of the FFAT motif (two phenylalanines in an acidic track) antagonizes mutant VAPB effects and restores transport to the NE. VAPB function is required for transport to the NE because knockdown of endogenous VAPB recapitulates this phenotype. Moreover, the compartment in which Nups and NE proteins are sequestered and retained was identified as ER-Golgi intermediate compartment (ERGIC). Moreover, a defect in the transport of NE and NPC proteins attenuates nucleocytoplasmic shuttling of the glucocorticoid receptor (GR). Further, VAPB-P56S which is only soluble in SDS was solubilized in the Triton-X-100 fraction similar to VAPB-WT upon co-transfection with the FFAT motif suggesting that FFAT interacts with the insoluble VAPB-P56S protein changing its biophysical properties.
4

THE APPLICATION OF SINGLE-POINT EDGE-EXCITATION SUB-DIFFRACTION MICROSCOPY FOR THE STUDY OF MACROMOLECULAR TRANSPORT

Tingey, Mark, 0000-0002-0365-5585 January 2023 (has links)
The development of super-resolution microscopy made it possible to surpass the diffraction limit of optical microscopy, enabling researchers to gain a nanometer scale understanding of cellular structures. While many applications have benefited from standard super-resolution microscopy, gaps remained making high-speed dynamic imaging in live cells impossible. To address this problem, single-point edge-excitation sub-diffraction (SPEED) microscopy was developed. This methodology enables the nanometer imaging of dynamic cell processes within live cells, the evaluation of subcellular structural information, the capacity to derive three-dimensional information from two-dimensional images within rotationally symmetric structures, and the interrogation of novel questions regarding the transport dynamics of macromolecules in a variety of cellular structures. Here, I have described the theory and method behind the current iteration of SPEED microscopy that we have developed and validated via Monte Carlo simulation. Further, a detailed description of how we have further developed SPEED microscopy to derive structural information within the nuclear pore complex as well as how SPEED has been applied to evaluate the export kinetics of mRNA. / Biology

Page generated in 0.0201 seconds