• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Amyotrophic Lateral Sclerosis 8 Mutant VAPB-P56S Causes a Nuclear Envelope and Nuclear Pore Defect

Chalhoub, Antonious 23 August 2012 (has links)
A P56S mutation in the VAPB MSP domain is linked to adult-onset amyotrophic lateral sclerosis 8. The objective of this study is to characterize the functional role of VAPB in transport of NE and NPC proteins from the ER to the NE. Over-expression of VAPB-P56S blocked the transport of nucleoporins (Nups) and NE proteins, resulting in their sequestration in dilated cytoplasmic membranes. Simultaneous overexpression of the FFAT motif (two phenylalanines in an acidic track) antagonizes mutant VAPB effects and restores transport to the NE. VAPB function is required for transport to the NE because knockdown of endogenous VAPB recapitulates this phenotype. Moreover, the compartment in which Nups and NE proteins are sequestered and retained was identified as ER-Golgi intermediate compartment (ERGIC). Moreover, a defect in the transport of NE and NPC proteins attenuates nucleocytoplasmic shuttling of the glucocorticoid receptor (GR). Further, VAPB-P56S which is only soluble in SDS was solubilized in the Triton-X-100 fraction similar to VAPB-WT upon co-transfection with the FFAT motif suggesting that FFAT interacts with the insoluble VAPB-P56S protein changing its biophysical properties.
2

The Amyotrophic Lateral Sclerosis 8 Mutant VAPB-P56S Causes a Nuclear Envelope and Nuclear Pore Defect

Chalhoub, Antonious 23 August 2012 (has links)
A P56S mutation in the VAPB MSP domain is linked to adult-onset amyotrophic lateral sclerosis 8. The objective of this study is to characterize the functional role of VAPB in transport of NE and NPC proteins from the ER to the NE. Over-expression of VAPB-P56S blocked the transport of nucleoporins (Nups) and NE proteins, resulting in their sequestration in dilated cytoplasmic membranes. Simultaneous overexpression of the FFAT motif (two phenylalanines in an acidic track) antagonizes mutant VAPB effects and restores transport to the NE. VAPB function is required for transport to the NE because knockdown of endogenous VAPB recapitulates this phenotype. Moreover, the compartment in which Nups and NE proteins are sequestered and retained was identified as ER-Golgi intermediate compartment (ERGIC). Moreover, a defect in the transport of NE and NPC proteins attenuates nucleocytoplasmic shuttling of the glucocorticoid receptor (GR). Further, VAPB-P56S which is only soluble in SDS was solubilized in the Triton-X-100 fraction similar to VAPB-WT upon co-transfection with the FFAT motif suggesting that FFAT interacts with the insoluble VAPB-P56S protein changing its biophysical properties.
3

The Amyotrophic Lateral Sclerosis 8 Mutant VAPB-P56S Causes a Nuclear Envelope and Nuclear Pore Defect

Chalhoub, Antonious January 2012 (has links)
A P56S mutation in the VAPB MSP domain is linked to adult-onset amyotrophic lateral sclerosis 8. The objective of this study is to characterize the functional role of VAPB in transport of NE and NPC proteins from the ER to the NE. Over-expression of VAPB-P56S blocked the transport of nucleoporins (Nups) and NE proteins, resulting in their sequestration in dilated cytoplasmic membranes. Simultaneous overexpression of the FFAT motif (two phenylalanines in an acidic track) antagonizes mutant VAPB effects and restores transport to the NE. VAPB function is required for transport to the NE because knockdown of endogenous VAPB recapitulates this phenotype. Moreover, the compartment in which Nups and NE proteins are sequestered and retained was identified as ER-Golgi intermediate compartment (ERGIC). Moreover, a defect in the transport of NE and NPC proteins attenuates nucleocytoplasmic shuttling of the glucocorticoid receptor (GR). Further, VAPB-P56S which is only soluble in SDS was solubilized in the Triton-X-100 fraction similar to VAPB-WT upon co-transfection with the FFAT motif suggesting that FFAT interacts with the insoluble VAPB-P56S protein changing its biophysical properties.
4

Nuclear pore membrane glycoprotein 210 as a new marker for epithelial cells

Olsson, Magnus January 2003 (has links)
<p>Epithelial cell polarisation is a prerequisite for the branching morphogenesis in several organs. Differential screening techniques were used to identify genes, which are upregulated during induction of epithelium in early kidney development. This investigation revealed two separate genes, Nuclear localising protein 1 (Nulp1), a previously undescribed gene with sequence characteristics of the basic helix-loop-helix transcription factor family, and glycoprotein 210 (gp210, POM210), an integral membrane protein constituent of the nuclear pore complex (NPC). Of these, gp210 was found to be upreglated during conversion of mesenchyme to epithelium. </p><p>The nuclear envelope, which demarcates the nuclear region in the eukaryotic cell, consists of an inner and an outer membrane that are fused at the locations for NPCs. These large macromolecular assemblages are tube like structures connecting the cytoplasmic and nuclear compartments of the cell. NPCs serve as the only conduits for exchange of molecular information between these cellular rooms. Electron microscopy techniques have revealed detailed information about the NPC architecture. A number of proteins (nucleoporins) have been characterised and embodied as components of the NPC structure. Active, energy dependent nucleocytoplasmic transport of RNAs and proteins is mediated by a group of soluble receptor proteins, collectively termed karyopherins. </p><p>Gp210 has been suggested to be important for nuclear pore formation. Nevertheless, our analyses showed a limited expression pattern of gp210, with its mRNA and protein largely confined to epithelial cells in the mouse embryo. Furthermore, in several cell lines, gp210 was undetectable. The expression pattern of gp210 was not synchronised with some other nucleoporins, indicating NPC heterogeneity. Characterisation of the structure of the human gp210 gene, including its promoter region, gave insight about possible cell-type specific gene regulatory mechanisms. </p><p>Regulation of molecular traffic between the nucleus and the cytoplasm leads to transcriptional control. Cell specific configuration of the NPC structure, due to diffential expression of gp210, could be involved in this control. Gp210 could be of importance for the development of epithelial cell polarisation.</p>
5

Nuclear pore membrane glycoprotein 210 as a new marker for epithelial cells

Olsson, Magnus January 2003 (has links)
Epithelial cell polarisation is a prerequisite for the branching morphogenesis in several organs. Differential screening techniques were used to identify genes, which are upregulated during induction of epithelium in early kidney development. This investigation revealed two separate genes, Nuclear localising protein 1 (Nulp1), a previously undescribed gene with sequence characteristics of the basic helix-loop-helix transcription factor family, and glycoprotein 210 (gp210, POM210), an integral membrane protein constituent of the nuclear pore complex (NPC). Of these, gp210 was found to be upreglated during conversion of mesenchyme to epithelium. The nuclear envelope, which demarcates the nuclear region in the eukaryotic cell, consists of an inner and an outer membrane that are fused at the locations for NPCs. These large macromolecular assemblages are tube like structures connecting the cytoplasmic and nuclear compartments of the cell. NPCs serve as the only conduits for exchange of molecular information between these cellular rooms. Electron microscopy techniques have revealed detailed information about the NPC architecture. A number of proteins (nucleoporins) have been characterised and embodied as components of the NPC structure. Active, energy dependent nucleocytoplasmic transport of RNAs and proteins is mediated by a group of soluble receptor proteins, collectively termed karyopherins. Gp210 has been suggested to be important for nuclear pore formation. Nevertheless, our analyses showed a limited expression pattern of gp210, with its mRNA and protein largely confined to epithelial cells in the mouse embryo. Furthermore, in several cell lines, gp210 was undetectable. The expression pattern of gp210 was not synchronised with some other nucleoporins, indicating NPC heterogeneity. Characterisation of the structure of the human gp210 gene, including its promoter region, gave insight about possible cell-type specific gene regulatory mechanisms. Regulation of molecular traffic between the nucleus and the cytoplasm leads to transcriptional control. Cell specific configuration of the NPC structure, due to diffential expression of gp210, could be involved in this control. Gp210 could be of importance for the development of epithelial cell polarisation.
6

The Characterisation of Putative Nuclear Pore-Anchoring Proteins in Arabidopsis thaliana

Collins, Patrick January 2013 (has links)
The nuclear pore complex (NPC) is perhaps the largest protein complex in the eukaryotic cell, and controls the movement of molecules across the nuclear envelope. The NPC is composed of up to 30 proteins termed nucleoporins (Nups), each grouped in different sub-complexes. The transmembrane ring sub-complex is composed of Nups responsible for anchoring the NPC to the nuclear envelope. Bioinformatic analysis has traced all major sub-complexes of the NPC back to the last eukaryotic common ancestor, meaning that the nuclear pore structure and function is conserved amongst all eukaryotes. In this study Arabidopsis T-DNA knockout lines for these genes were investigated to characterise gene function. Differences in plant growth and development were observed for the ndc1 knockout line compared to wild-type but gp210 plants showed no phenotypic differences. The double knockout line gp210 ndc1 was generated through crosses to observe plant response to the knockout of two anchoring-Nup genes. No synergistic affect from this double knockout was observed, suggesting that more, as yet unidentified Nups function the transmembrane ring in plants. The sensitivity to nuclear export inhibitor leptomycin B (LMB) was tested also for knockout lines, although growth sensitivity to the drug was not observed. Nucleocytoplasmic transport of knockout lines was measured in cells transformed by particle bombardment. To express fluorescent protein constructs actively transported through the NPC, localisation of protein determined the nucleocytoplasmic transport of the cell. The ndc1single knockout and the double knockout gp210 ndc1 exhibited decreased nuclear export. Further experiments in determining NDC1 localisation and identification of other Nups in the transmembrane ring sub-complex would bring a more comprehensive understanding to the plant NPC.

Page generated in 0.0244 seconds