• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 8
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on transformation of tobacco leaf protoplasts Ti-plasmid DNA transformation and cocultivation with Agrobacterium tumefaciens.

Krens, Franciscus Andries, January 1983 (has links)
Thesis--Leyden. / In Periodical Room.
2

Proteiny rodiny ALBA a jejich úloha ve vývoji samčího gametofytu / ALBA-family proteins and their role in male gametophyte development

Náprstková, Alena January 2016 (has links)
Alba family proteins are highly conserved in all domains of life. They are involved in RNA metabolism in Archae and Eucarya, while they are involved in the chromatin organisation in Crenarchaea. In animals, ALBA proteins were identified to associate with RNase P/MRP subunits. The objective of my thesis was the characterization of ALBA family proteins in a model plant Arabidopsis thaliana. The Arabidopsis genome contains six genes with close homology, three from Rpp20-like subfamily and three of Rpp25-like subfamily. Here I present the localization of GFP-fused proteins in Arabidopsis stable lines harbouring constructs cloned by Gateway® Technology. ALBA proteins were localized in the cytoplasm and undefined particles in root differentiation zone and in mature pollen. The characterization of the respective T-DNA insertion lines did not reveal significant phenotype defects in growth and development of sporophyte and gametophyte in comparison to Columbia-0 plants, probably because of likely functional redundancy od the paralogs. Expression profiles and localization of ALBA proteins suggest their possible role in differentiation and dehydration stress response in Oryza. They were also observed to associate with repressed mRNA transcripts in storage EPP particles. Collectively, I propose the likely role...
3

Charakterizace podjednotky SEC15 poutacího komplexu exocyst u A. thaliana / Characterization of the exocyst complex SEC15 subunit in A. thaliana

Aldorfová, Klára January 2016 (has links)
The final step of secretion termed exocytosis is mediated by the exocyst complex. The exocyst is an evolutionary conserved protein complex that tethers secretory vesicle to the target membrane and consists of eight subunits: Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo84, and Exo70. Sec15 exocyst subunit was previously shown to connect the rest of the exocyst complex with a secretory vesicle in yeast, mammals and fruit fly via interaction with Rab GTPase and GEF of Rab GTPase. Here, I show that plant SEC15B potentially functions in evolutionary conserved manner. First, two mutant lines of Arabidopsis thaliana sec15b mutant were tested in characteristics typical for other exocyst mutants. Although some characteristics reach certain level of plasticity, both sec15b-1 and sec15b-2 show similar tendencies, which are mostly consistent with defects with other mutants in exocyst subunits. sec15b-1 has been determined as a stronger allele that is defective in formation of seed coat, elongation of etiolated hypocotyl, growth of stem and primary root, establishment of axillary branches and lateral roots, diameter of rosette and, unexpectedly, growth of pollen tubes. Phenotype of sec15b-1 was rescued by insertion of SEC15B gene under SEC15B promotor. Second, complementation test showed that SEC15B and SEC15A are...
4

Genetic studies of phenotypic variants in the woodland strawberry, (Fragaria vesca)

Holt, Sarah Hudson 24 October 2011 (has links)
The diploid woodland strawberry (Fragaria vesca) is a rapidly developing translational model for members of the family Rosaceae and other plants. This thesis represents some of the first forward genetics studies evaluating putative T-DNA insertional mutants in F. vesca. The observed phenotypes include alterations to floral development, anthocyanin pigmentation and leaf structure. The floral development mutant named green petal (gp) was not associated with the T-DNA insertions present. Based on similar phenotypes induced by mutation of transcription factors involved in floral development of Arabidopsis thaliana, we used a BLAST search of the F. vesca genome hybrid gene models to identify 30 candidate genes that may have caused the gp phenotype. Expression analysis of these genes revealed that it was due to a 37 bp deletion in a SEPALLATA3-like E-Class MADS box transcription factor. This mutation altered organ structure in the three inner whorls of the flower, affecting fertility and fruit development. The deletion was demonstrated to segregate with the mutant phenotype in a segregating population of 92 individuals, 22 of which had green petals. The anthocyanin biosynthesis mutant named white runner (wr) lacked red pigmentation in the stems and runners. The T-DNA insertion in this line was located in a highly repetitive LTR retrotransposon region, which complicated analysis. Segregation analysis of the wr lines revealed that the phenotype was unassociated with the T-DNA insertion as well. We used a targeted expression analysis of three critical structural genes in the flavonoid biosynthesis pathway that revealed a 20 bp deletion in the gene encoding flavanone 3-hydroxylase, an enzyme necessary for the production of flavonols, anthocyanins and proanthocyanidins. In an F2 segregating population, this deletion co-segregated with the phenotype. The third mutant line presented here displayed a curly leaf (cl) phenotype and was found to harbor a T-DNA insertion in a gene encoding a putative erythroblast macrophage attacher protein (EMP). Sequence and protein domain analysis indicated that FvEMP was related to the mammalian EMP protein that functions in cytoskeletal dynamics and red blood cell enucleation. Complementation analysis confirmed that introduction of the wild type FvEMP gene into the cl mutant plants restored wild type leaf phenotype. Further morphological analysis revealed additional pleiotropic effects of the mutation, including abnormalities in seed set and germination, pollen tube growth, adhesion of the abaxial epidermal layer to the mesophyll layer and reduced petiolule length. These phenotypes are consistent with actin binding and microtubule associated protein mutants in other plant species. Insertional mutagenesis is a critical molecular tool for model crop development. These studies highlight the precautions that must be taken when evaluating insertional mutants. These mutants are excellent tools for studying their respective disrupted gene function. The in depth molecular analysis of the mutants presented in this work was only possible because of the availability of the Fragaria vesca genome which was used extensively to identify T-DNA insertion sites and recover candidate gene sequences for expression analysis. / Ph. D.
5

Characterization of T-DNA integration sites within a population of insertional mutants of the diploid strawberry Fragaria vesca L.

Ruiz-Rojas, Juan Jairo 02 December 2010 (has links)
Cultivated strawberry (Fragaria × ananassa) is an octoploid (2n=8x=56) species that belongs to the Rosaceae family and the high ploidy level makes genetic and molecular studies difficult. However, its commercial success because of its unique flavor and nutritious qualities has increased interest in the development of genomic resources. Fragaria vesca L. is a diploid (2n=2x=14) species with a small genome size (206 Mbp), short reproductive cycle, and facile vegetative and seed propagation that make it an attractive model for genomic studies. The availability of an efficient transformation methodology for Fragaria vesca has facilitated the use of a T-DNA mutagenesis system to develop a collection of several hundred insertional T-DNA mutants at Virginia Tech, using either of two commercially available vectors, pCAMBIA 1302 and 1304. In this study, we have used expression of the green fluorescent protein (GFP) as a tool to identify homozygous mutant lines. Three different approaches were conducted, first we identified 11 homozygous lines by PCR, then another 55 homozygous lines by absence of segregation of GFP expression in T2 seedlings, and finally we attempted to distinguish homozygous from hemizygous lines by relative GFP expression measured using a commercially available GFP meter. The latter methodology was unsuccessful due to uncontrolled variability in the readings. Continuing the characterization of our mutant population, we used thermal asymmetric interlaced PCR (TAIL-PCR) to obtain the nucleotide sequence of the genomic DNA regions that flank the T-DNA insertion sites in independent transgenic strawberry lines. Primers were designed that would amplify the derived strawberry flanking sequences in the two parents of an interspecific mapping population between the two diploid species, F. vesca x F. bucharica. The amplified products were sequenced and examined for the occurrence of SNPs (single nucleotide polymorphisms). The same primers were then used on the F2 mapping population. Segregation of SNP markers with previously mapped genetic markers allowed us to position 74 SNP markers, and hence their corresponding insertional mutants, on a well-populated genetic linkage map for the diploid strawberry. Finally, we analyzed the insertion site from more than 190 mutants looking at both the right and left borders of the T-DNA where microsimilarities of a few base pairs between ends of T-DNA and genomic DNA were observed, indicating that T-DNA integration had not occurred randomly in strawberry. We have also characterized the insertion sites through gene annotation found in the strawberry genome database. / Ph. D.
6

Role of transcription factors in early male gametophyte development of Arabidopsis.

REŇÁK, David January 2011 (has links)
In the presented work the relationship between transcription factors and male gametophyte development was studied. The Ph.D. Thesis covers selection of candidate genes, wide-scale screening of T-DNA mutant lines and detailed analysis of a selected transcription factor on pollen development.
7

Progress of Work towards Cloning Gravity Persistence Signal (gps) Mutants by PCR-Based Methods and Positional Mapping

Briju, Betsy J. January 2011 (has links)
No description available.
8

Functions of REP27 and the low molecular weight proteins PsbX and PsbW in repair and assembly of photosystem II

Garcia Cerdan, Jose Gines January 2009 (has links)
Oxygenic photosynthesis is the major producer of both oxygen and organic compounds on earth and takes place in plants, green algae and cyanobacteria. The thylakoid membranes are the site of the photosynthetic light reactions that involve the concerted action of four major protein complexes known as photosystem II (PSII), cytochrome b6f complex, ATP synthase and photosystem I (PSI). The function of PSII is of particular interest as it performs the light–driven water splitting reaction driving the photosynthetic electron transport. My thesis addressed different aspects of PSII assembly and the functions of its low molecular weight PSII subunits PsbX and PsbW. Photosynthesis in green algae and higher plants is controlled by the nucleus. Many proteins of nuclear origin participate in the regulation of the efficient assembly of the photosynthetic protein complexes. In this investigation we have identified one of these nuclear encoded auxiliary proteins of photosystem II, REP27, which participates in the assembly of the D1 reaction center protein and repair of photodamaged PSII in the green algae Chlamydomonas reinhardtii. Interestingly, PSII is specially enriched in Low Molecular Weight (LMW) subunits that have masses less than 10kDa. These proteins account for more than the half of the PSII subunits. Several questions remains poorly understood regarding the LMW: Which is their evolutionary origin? What function do they perform in the protein complex? Where are they located in the protein structure? In this investigation the functions of two of these LMW subunits (PsbX and PsbW) have been studied using antisense inhibition and T-DNA knockout mutant plants in Arabidopsis thaliana. Deficiency of the PsbX protein leads to impaired accumulation and functionality of PSII. Characterization of PsbW knock-out plants show that PsbW participates in stabilization of the macro-organization of PSII and the peripheral antenna (Light Harvesting Complex, LHCII) in the grana stacks of the chloroplast, also known as PSII-LHCII supercomplexes.
9

The fate of T-DNA during vegetative and generative propagation crown gall and hairy root tissues of Nicotiana spp. /

Peerbolte, Rindert. January 1986 (has links)
Thesis (Ph. D.)--Rijksuniversiteit te Leiden. / eContent provider-neutral record in process. Description based on print version record.
10

Molecular Interactions of Arabinogalactan-Proteins (AGPs) in Tobacco Bright Yellow-2 Cultured Cells and Functional Identification of Four Classical AGPs in Arabidopsis

Sardar, Harjinder Singh 28 September 2007 (has links)
No description available.

Page generated in 0.0274 seconds