Spelling suggestions: "subject:"nutrient ensing"" "subject:"nutrient densing""
1 |
Lifespan Extension, Nutrient Sensing and Immune CompetenceGoldberg, Emily L. January 2014 (has links)
Immune protection wanes during aging. This is evidenced by increased morbidity and mortality from infectious disease in aged individuals. As the aging population continues to increase worldwide, it will become increasingly important to determine both causes and therapeutic strategies for defects in the aged immune response. In particular, CD8 T cells have been shown to be highly susceptible to age-related defects. Recently, metabolic pathways have been implicated as critical factors in T cell fate decisions during immune responses. Of note, metabolic pathways are also considered primary determinants of lifespan in mammals. Therefore, we hypothesized that metabolic manipulations to extend lifespan would have significant effects on the aging immune system and protection during infection. In particular, we investigated the impact of rapamycin (rapa), both acute and chronic treatment regimens, on adult and old mice. Specifically, we tested how T cell development, peripheral homeostasis, and effector immunity became altered during treatment. We made side-by-side comparisons in calorically restricted (CR) old mice as a gold standard model of longevity extension. Importantly, both of these interventions have been reported to benefit immune function and extend lifespan in mice. However, our data strongly indicate that both rapa and CR induce distinct but deleterious consequences to overall immunity in mice. We conclude that neither rapa nor CR may be ideal candidates for extending lifespan in humans.
|
2 |
Hypothalamic AMP-activated Protein Kinase Regulates Glucose ProductionYang, Shuo 04 January 2012 (has links)
Hypothalamic AMP-activated protein kinase (AMPK) regulates energy homeostasis in response to nutritional and hormonal signals. However, its role in glucose production regulation remains to be elucidated. Here, we tested the hypothesis that bidirectional changes in hypothalamic AMPK activity alter glucose production in rodents. First, we found that knocking down hypothalamic AMPK activity in an in vivo rat model led to a significant suppression of glucose production independent of changes in food intake and body weight. Second, we showed that activation of hypothalamic AMPK negated the ability of hypothalamic glucose- and lactate- sensing to lower glucose production. Collectively, these data indicate that changes in hypothalamic AMPK activity are sufficient and necessary for hypothalamic nutrient-sensing mechanisms to alter glucose production in vivo, and highlight the novel role of hypothalamic AMPK in the maintenance of glucose homeostasis in addition to energy balance.
|
3 |
Hypothalamic AMP-activated Protein Kinase Regulates Glucose ProductionYang, Shuo 04 January 2012 (has links)
Hypothalamic AMP-activated protein kinase (AMPK) regulates energy homeostasis in response to nutritional and hormonal signals. However, its role in glucose production regulation remains to be elucidated. Here, we tested the hypothesis that bidirectional changes in hypothalamic AMPK activity alter glucose production in rodents. First, we found that knocking down hypothalamic AMPK activity in an in vivo rat model led to a significant suppression of glucose production independent of changes in food intake and body weight. Second, we showed that activation of hypothalamic AMPK negated the ability of hypothalamic glucose- and lactate- sensing to lower glucose production. Collectively, these data indicate that changes in hypothalamic AMPK activity are sufficient and necessary for hypothalamic nutrient-sensing mechanisms to alter glucose production in vivo, and highlight the novel role of hypothalamic AMPK in the maintenance of glucose homeostasis in addition to energy balance.
|
4 |
Structural and functional characterisation of the nutrient sensing kinase GCN2Inglis, Alison January 2018 (has links)
A cell’s ability to recognise and respond to changes in its environment is crucial to its survival. The availability of nutrients is a fundamental part of the environment, and so cells must be able to identify when they are plentiful and when they are scarce, and adapt accordingly. GCN2 is a key protein kinase within the eukaryotic proteome, and it is activated by a drop in the intracellular concentration of amino acids. When activated, GCN2 phosphorylates the translation initiation factor eIF2, initiating the Integrated Stress Response. This causes the global inhibition of protein synthesis and the upregulation of stress response pathways. GCN2 has been implicated in a wide range of cellular processes in health and diseases, including the development of pulmonary veno-occlusive disease, neurological degeneration and cancer. The molecular mechanisms that control the regulation and activation of GCN2 remain unclear. Some insights have been provided through genetic experiments on yeast, but the complexities of the regulatory pathways have made it difficult to decipher precise mechanistic details. For this reason, the aim of this project was to characterise the human GCN2 kinase both functionally and structurally, and to investigate the molecular mechanisms that enable it to act as a sensor of nutritional stress. This thesis describes the development of a system to reconstitute GCN2 activation using purified components, allowing the effects of different regulators to be tested and characterised. Insights from these data alongside structural insights into the kinase allow the proposal of a model concerning how GCN2 can sense amino acid deprivation in response to various regulatory signals. While GCN2 is activated by nutritional stress, mammalian cells have evolved a panoply of responses to environmental stress. Hsp90 is a chaperone that is required for the stability and maintenance of approximately 60 % of the human kinome, yet how it recognises client kinases is still unclear. The final chapter of this thesis describes the use of biochemical methods in combination with HDX-MS to characterise the interactions between Hsp90’s co-chaperone Cdc37 and client kinases. These analyses enabled the identification of a correlation between protein stability and dependence on Hsp90/Cdc37, and revealed that Cdc37 binding causes a dramatic conformational remodelling of the N-lobe of the kinase.
|
5 |
Regulation of the intestinal sodium/glucose cotransporter SGLT1 in health and diseaseStearns, Adam T. January 2009 (has links)
No description available.
|
6 |
Central Nervous System Nutrient-sensing and the Regulation of Energy and Glucose HomeostasisLam, Ka Lo Carol 15 February 2010 (has links)
Hypothalamic lactate metabolism regulates hepatic glucose and lipid homeostasis, however it remains unclear whether hypothalamic lactate also controls energy homeostasis. Furthermore, the precise downstream molecular and signaling pathway(s) involved in hypothalamic lactate-sensing is yet to be fully elucidated. To specifically address these two questions, we tested the hypothesis that hypothalamic lactate metabolism regulates energy homeostasis (Study 1) and assessed whether the activation of N-methyl-D-aspartate (NMDA) receptors in the nucleus of the solitary tract (NTS) of the brainstem is required for hypothalamic lactate, and sufficient per se, to regulate glucose homeostasis (Study 2). In an in vivo rat model, we reported in Study 1 that central lactate lowers food intake and body weight through its metabolism into pyruvate. In Study 2, we identified that hypothalamic lactate metabolism requires the activation of NMDA receptors in the NTS to lower hepatic glucose production. Moreover, we showed that the activation of NTS NMDA receptors per se lowers hepatic glucose production. In summary, these findings advance the understanding of central nutrient-sensing in the regulation of energy and glucose homeostasis, which is critical in bridging the therapeutic gap of obesity and type 2 diabetes.
|
7 |
Central Nervous System Nutrient-sensing and the Regulation of Energy and Glucose HomeostasisLam, Ka Lo Carol 15 February 2010 (has links)
Hypothalamic lactate metabolism regulates hepatic glucose and lipid homeostasis, however it remains unclear whether hypothalamic lactate also controls energy homeostasis. Furthermore, the precise downstream molecular and signaling pathway(s) involved in hypothalamic lactate-sensing is yet to be fully elucidated. To specifically address these two questions, we tested the hypothesis that hypothalamic lactate metabolism regulates energy homeostasis (Study 1) and assessed whether the activation of N-methyl-D-aspartate (NMDA) receptors in the nucleus of the solitary tract (NTS) of the brainstem is required for hypothalamic lactate, and sufficient per se, to regulate glucose homeostasis (Study 2). In an in vivo rat model, we reported in Study 1 that central lactate lowers food intake and body weight through its metabolism into pyruvate. In Study 2, we identified that hypothalamic lactate metabolism requires the activation of NMDA receptors in the NTS to lower hepatic glucose production. Moreover, we showed that the activation of NTS NMDA receptors per se lowers hepatic glucose production. In summary, these findings advance the understanding of central nutrient-sensing in the regulation of energy and glucose homeostasis, which is critical in bridging the therapeutic gap of obesity and type 2 diabetes.
|
8 |
Hypothalamic nutrient sensingHeeley, Nicholas John January 2018 (has links)
Nutrient sensing neurons are unique in coupling changes in the concentration of nutrients to changes in neuronal activity. These neurons typically exist in regions of the brain where the blood brain barrier is fenestrated, such as the arcuate nucleus of the hypothalamus. Glucose and leucine are nutrients known to be sensed by neurons in this brain region, but the mechanisms by which they are sensed, and cells that sense them require further study. Using calcium imaging of adult neuron cultures from the mouse mediobasal hypothalamus, I demonstrated that leucine bidirectionally regulates neuronal activity in a neurochemically heterogeneous population of neurons, including AgRP/NPY and POMC neurons. Using pharmacological tools, I demonstrated, unexpectedly, that this acute sensing is independent of mTOR and leucine metabolism, known pathways involved in leucine sensing in vivo. Leucine sensing is LAT1 independent. The response principally relies on calcium entry into the cell across the plasma membrane, but IP3 sensitive calcium stores play a role in neurons inhibited by leucine. Using phosphoTRAP and single cell RNA sequencing, I aimed to identify a molecular marker for leucine sensing cells to allow their manipulation in vivo. PhosphoTRAP, and subsequent pharmacological studies identified a T Type calcium channel may be a marker for leucine sensing cells. AgRP neurons are essential for feeding, and also play roles in controlling glucose homeostasis. Using chemogenetics to selectively activate these neurons, I demonstrated, in contrast to a similar, recently published study, that blood glucose concentrations did not rise upon activation of these neurons. A subpopulation of AgRP neurons express glucokinase, and some AgRP neurons are glucose inhibited, but the role of glucokinase in these neurons has not been characterised. Our lab generated an AgRP neuron specific glucokinase knock out mouse line. Preliminary results suggest 18 – 25 week old female AgRP glucokinase knock out mice may have altered glucose tolerance, but conclusions can only be drawn once further mice have been phenotyped, and the success of the glucokinase knock out from AgRP neurons has been confirmed.
|
9 |
Characterizing Interaction Between PASK and PBP1/ ATXN2 to Regulate Cell Growth and ProliferationChoksi, Nidhi Rajan 01 September 2016 (has links)
Pbp1 is a component of glucose deprivation induced stress granules and is involved in P-body-dependent granule assembly. We have recently shown that Pbp1 plays an important role in the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (Snf1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1), to regulate glucose allocation during nutrient depletion. This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. In this study we further characterized the regulation of Pbp1 by PAS kinase through the characterization of the role of the Psk1 homolog (Psk2) in Pbp1 regulation, and the identification of functional Pbp1 binding partners. Human ataxin-2 (ATXN2) is the homolog of yeast Pbp1 and has been shown to play an important role in the development of several ataxias. In this study we have also provided the evidence that human ataxin-2 can complement Pbp1 in yeast, and that human PAS kinase can phosphorylate human ataxin-2. Further characterizing this interplay between PAS kinase and Pbp1/ATXN2 aid in understanding pathways required for proper glucose allocation during nutrient depletion, including reducing cell growth and proliferation when energy is low. In addition, it yields valuable insights into the role of ataxin-2 in the development of devastating ataxias.
|
10 |
Snf1 Mediated Phosphorylation and Activation of PAS KinaseBadal, Bryan D. 01 September 2014 (has links) (PDF)
Nutrient sensing kinases sense available nutrients and regulate cell activity accordingly. Three of these enzymes are AMP regulated kinase (AMPK, or Snf1 in yeast), PAS kinase, and target of rapamycin (TOR), are conserved from yeast to man and have overlapping function. AMPK and Snf1 are important in sensing when nutrient status in the cell is low and down regulating energy consuming pathways. PAS kinase is required for glucose homeostasis in the cell, and responds to glucose levels. TOR senses nutrients such as amino acids and upregulates cell growth pathways primarily through protein synthesis. Due to the varying nature of these enzymes, cross talk is expected in order for the cell to properly regulate cellular metabolism and growth in response to energy and nutrient availability. Previous studies have shown that activation of yeast PAS kinase under nutrient stress conditions requires the presence of Snf1. The aim of this thesis is to determine whether Snf1 directly phosphorylates and activates PAS kinase through both in vivo and in vitro approaches. PAS kinase was found to require Snf1 for both activation and phosphorylation in vivo. In vitro kinase assays were also performed to confirm a direct phosphorylation event. The results from this study support the direct phosphorylation and activation of PAS kinase by Snf1, linking cellular energy status to glucose allocation.
|
Page generated in 0.1037 seconds