• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 631
  • 7
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 655
  • 568
  • 566
  • 566
  • 548
  • 548
  • 448
  • 374
  • 322
  • 318
  • 316
  • 316
  • 313
  • 295
  • 287
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Evaluating mantle and crustal processes using isotope geochemistry

Saal, Alberto Edgardo January 2000 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 2000. / "September 1999." / Includes bibliographical references. / Geochemical studies are fundamental for understanding how the dynamic Earth works and evolves. These studies place constraints on the composition, formation, age, distribution, evolution and scales of geochemically distinct reservoirs such as the Earth's crust, mantle and core. In this dissertation the strategy has been to work on a broad range of topics to evaluate crustal and mantle processes. This study presents Re-Os systematics to constrain the composition, formation and age of the lower continental crust and the mantle lithosphere, examines melt inclusion from oceanic island basalts to evaluate the scale of the mantle heterogeneities, and uses U-series isotope to constrain geodynamic parameters, such as the upwelling velocities and porosities of mantle plumes. The lower continental crust plays a pivotal role in understanding the composition and evolution of the continental crust and the petrogenesis of continental basalts. / by Alberto Edgardo Saal. / Ph.D.
522

Climate controls on coral growth in the Caribbean

Bosshart, Sara A. (Sara Allison) January 2013 (has links)
Thesis (Ph. D.)--Joint Program in Marine Geology and Geophysics (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2013. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 77-85). / Accurate predictions of Caribbean coral reef responses to global climate change are currently limited by a lack of knowledge of the dominant environmental controls on coral growth. Corals exhibit significant responses to environmental variability occurring on multi-annual to decadal timescales, which are significantly longer than the duration of typical laboratory and field-based experiments. Skeletal growth records, which provide annually-resolved histories spanning several centuries, enable links to be established between coral growth and both long term trends and low-frequency oscillations in environmental conditions. We used 3-D CT scan and imaging techniques to quantify the growth of 3 massive corals (Siderastrea siderea) from the US Virgin Islands (USVI) over the period 1950-2009 and compared these growth rates to other records collected from the USVI, Puerto Rico, the Yucatan, Belize and the Bahamas. While coral growth rates were inversely correlated to sea surface temperature (SST) in the Western Caribbean basin (Yucatan, Belize, Bahamas), we found no significant relationship between SST and coral growth in the Eastern basin (USVI, Puerto Rico). Instead, we found a significant inverse relationship between coral growth in the Western Caribbean and changes in the Atlantic Multidecadal Oscillation and a significant positive relationship between coral growth in the Eastern Caribbean Region and shifts in the Pacific Decadal Oscillation. Using data from the Simple Ocean Data Assimilation (SODA) we compared the wind field anomalies during periods of positive coral growth in both regions with the wind field anomalies during phases of these climactic modes that are conducive to coral growth. We find that both the AMO and the PDO play a significant role in shifting the mean wind patters in these Caribbean regions, with the PDO primarily affecting wind patters in the Eastern Basin and the AMO affecting wind patterns in the Western basin. We suggest that the altered wind patterns associated with these modes may induce upwelling favorable conditions in their respective regions of influence, increasing the availability of nutrients for coral growth. / by Sara A. Bosshart. / Ph.D.
523

The marine biogeochemistry of dissolved and colloidal iron

Fitzsimmons, Jessica Nicole January 2013 (has links)
Thesis (Ph. D.)--Joint Program in Chemical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2013. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Iron is a redox active trace metal micronutrient essential for primary production and nitrogen acquisition in the open ocean. Dissolved iron (dFe) has extremely low concentrations in marine waters that can drive phytoplankton to Fe limitation, effectively linking the Fe and carbon cycles. Understanding the marine biogeochemical cycling and composition of dFe was the focus of this thesis, with an emphasis on the role of the size partitioning of dFe (<0.2 jm) into soluble (sFe<0.02 jm) and colloidal (0.02ptm<cFe<0.2 m) size fractions. This was accomplished through the measurement of the dFe distribution and size partitioning along basin-scale transects experiencing a range of biogeochemical influences. dFe provenance was investigated in the tropical North Atlantic and South Pacific Oceans. In the North Atlantic, elevated dFe (>I nmol/kg) concentrations coincident with the oxygen minimum zone were determined to be caused by remineralization of a high Fe:C organic material (vertical flux), instead of a laterally advected low oxygen-high dFe plume from the African margin. In the South Pacific Ocean, dFe maxima near 2000m were determined by comparison with dissolved manganese and 3He to be caused by hydrothermal venting. The location of these stations hundreds to thousands of kilometers from the nearest vents confirms the "leaky vent" hypothesis that enough dFe escapes precipitation at the vent site to contribute significantly to abyssal dFe inventories. The size partitioning of dFe was also investigated in order to trace the role of dFe composition on its cycling. First, the two most commonly utilized methods of sFe filtration were compared: cross flow filtration (CFF) and Anopore filtration. Both were found to be robust sFe collection methods, and sFe filtrate through CFF (10 kDa) was found to be only 74±21% of the sFe through Anopore (0.02pjm) filters at 28 locations, a function of both pore size differences and the natural variability in distribution of 1 OkDa- 0.02 [m colloids. In the North Atlantic, a colloidal-dominated partitioning was observed in the surface ocean underlying the North African dust plume, in and downstream of the TAG hydrothermal system, and along the western Atlantic margin. However, cFe was depleted or absent at the deep chlorophyll maximum. A summary model of dFe size partitioning in the North Atlantic open ocean is presented in conclusion, hypothesizing that a constant dFe exchange between soluble and colloidal pools modulates the constant partitioning of nearly 50% dFe into the colloidal phase throughout the subsurface North Atlantic Ocean, while sFe and cFe cycle independently in the upper ocean. / by Jessica Nicole Fitzsimmons. / Ph.D.
524

Determining timescales of natural carbonation of peridotite in the Samail Ophiolite, Sultanate of Oman

Mervine, Evelyn Martinique January 2012 (has links)
Thesis (Ph. D.)--Joint Program in Marine Geology and Geophysics (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2012. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Determining timescales of the formation and preservation of carbonate alteration products in mantle peridotite is important in order to better understand the role of this potentially important sink in the global carbon cycle and also to evaluate the feasibility of using artificially-enhanced, in situ formation of carbonates in peridotite to mitigate the buildup of anthropogenic CO₂ emissions in the atmosphere. Timescales of natural carbonation of peridotite were investigated in the mantle layer of the Samail Ophiolite, Sultanate of Oman. Rates of ongoing, low-temperature CO₂ uptake were estimated through ¹⁴C and ²³⁰Th dating of carbonate alteration products. Approximately 1-3 x 10⁶ kg CO₂/yr is sequestered in Ca-rich surface travertines and approximately 10⁷ kg CO₂/yr is sequestered in Mg-rich carbonate veins. Rates of CO₂ removal were estimated through calculation of maximum erosion rates from cosmogenic 3He measurements in partially-serpentinized peridotite bedrock associated with carbonate alteration products. Maximum erosion rates for serpentinized peridotite bedrock are ~5 to 180 m/Myr (average: ~40 m/Myr), which removes at most 10⁵-10⁶ kg CO₂/yr through erosion of Mg-rich carbonate veins. / by Evelyn Martinique Mervine. / Ph.D.
525

Wave-, wind-, and tide-driven circulation at a well-mixed ocean inlet

Wargula, Anna (Anna Elizabeth) January 2017 (has links)
Thesis: Ph. D. in Mechanical and Oceanographic Engineering, Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2017. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 93-104). / The effects of waves, wind, and bathymetry on tidal and subtidal hydrodynamics at unstratified, shallow New River Inlet, NC, are evaluated using field observations and numerical simulations. Tidal flows are ebb-dominated (-1.5 to 0.6 m/s, positive is inland) inside the main (2 to 5 m deep) channel on the (1 to 2 m deep) ebb shoal, owing to inflow and outflow asymmetry at the inlet mouth. Ebb-dominance of the flows is reduced during large waves (> 1 m) owing to breaking-induced onshore momentum flux. Shoaling and breaking of large waves cause depression (setdown, offshore of the ebb shoal) and super-elevation (setup, on the shoal and in the inlet) of the mean water levels, resulting in changes to the cross-shoal pressure gradient, which can weaken onshore flows. At a 90-degree bend 800-m inland of the inlet mouth, centrifugal acceleration owing to curvature drives two-layered cross-channel flows (0.1 to 0.2 m/s) with surface flows going away from and bottom flows going toward the bend. The depth-averaged dynamics are tidally asymmetric. Subtidal cross-channel flows are correlated (r² > 0.5) with cross-channel wind speed, suggesting that winds are enhancing and degrading the local-curvature induced two-layer flow, and driving three-layer flow. / by Anna Wargula. / Ph. D. in Mechanical and Oceanographic Engineering
526

Mechanisms of turbulent mixing in the Continental Shelf bottom boundary layer

Shaw, William J. (William James), 1971- January 2000 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 2000. / Includes bibliographic references. / The bottom boundary layer is an important dynamical region of shallow water flows. In this thesis, the problem of turbulent mixing in the coastal bottom boundary layer is investigated with a unique set of field measurements of velocity and sound speed that span a significant fraction of the boundary layer obtained over a six-week long period in the late summer of 1996 on the New England shelf. The energetics of the turbulent fluctuations are investigated by testing simplified budgets for turbulent kinetic energy and scalar variance. The turbulent kinetic energy budget is locally balanced while the scalar variance budget is not, probably due to turbulent diffusion. The direct effects of stratification are consistently significant only in the outer part of the boundary layer, where the flux Richardson number is approximately equal to a critical value of 0.2. Turbulence closure is investigated in terms of non-dimensional profiles of velocity and sound speed. Close to the bottom, the results are consistent with Monin-Obukhov similarity theory, while in the outer part of the boundary layer other scales including the height of the boundary layer are important for setting the turbulent length scale. / by William J. Shaw. / Ph.D.
527

Carbon nanotube synthesis and detection : limiting the environmental impact of novel technologies / Limiting the environmental impact of novel technologies

Plata, Desirée L January 2009 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; and the Woods Hole Oceanographic Institution), 2009. / Includes bibliographical references. / Driven by commercial promise, the carbon nanotube (CNT) industry is growing rapidly, yet little is known about the potential environmental impacts of these novel materials. In particular, there are no methods to detect CNTs in environmental matrices (e.g.,sediment) and thus, there is no way to study their transport or gauge ecological exposure. Thermal methods were developed to quantify CNTs in coastal sediments down to 10 ug per sample, which is sufficient to for CNTs in laboratory air, but not sufficient to measure contemporary levels of CNTs in the environment (which were estimated to be present at pg g' sediment levels using a dynamic mass balance model). In addition to the CNTs themselves, potential impacts of CNT production were assessed by monitoring emissions from a representative synthesis. An ethene-fed chemical vapor deposition process generated several compounds of environmental concern, including the greenhouse gas, methane, the hazardous pollutants, benzene and 1,3-butadiene, and toxic polycyclic aromatic hydrocarbons. By identifying critical CNT precursors (alkynes), I delivered these compounds without thermal pre-treatment and achieved rapid CNT growth. This approach reduced carbonaceous emissions by more than an order of magnitude, and lowered initial feedstock requirements and energetic demands by at least 20%, without sacrificing CNT yield. / by Desirée L. Plata. / Ph.D.
528

The geochemistry of methane isotopologues

Wang, David Texan January 2017 (has links)
Thesis: Ph.D. in Geochemistry, Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2017. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (pages 123-143). / This thesis documents the origin, distribution, and fate of methane and several of its isotopic forms on Earth. Using observational, experimental, and theoretical approaches, I illustrate how the relative abundances of ¹²CH₄, ¹³CH₄, ¹²CH₃D, and ¹³CH₃D record the formation, transport, and breakdown of methane in selected settings. Chapter 2 reports precise determinations of ¹³CH₃D, a "clumped" isotopologue of methane, in samples collected from various settings representing many of the major sources and reservoirs of methane on Earth. The results show that the information encoded by the abundance of ¹³CH₃D enables differentiation of methane generated by microbial, thermogenic, and abiogenic processes. A strong correlation between clumped- and hydrogen-isotope signatures in microbial methane is identified and quantitatively linked to the availability of H₂ and the reversibility of microbially-mediated methanogenesis in the environment. Determination of ¹³CH₃D in combination with hydrogen-isotope ratios of methane and water provides a sensitive indicator of the extent of C-H bond equilibration, enables fingerprinting of methane-generating mechanisms, and in some cases, supplies direct constraints for locating the waters from which migrated gases were sourced. Chapter 3 applies this concept to constrain the origin of methane in hydrothermal fluids from sediment-poor vent fields hosted in mafic and ultramafic rocks on slow- and ultraslow-spreading mid-ocean ridges. The data support a hypogene model whereby methane forms abiotically within plutonic rocks of the oceanic crust at temperatures above ca. 300 °C during respeciation of magmatic volatiles, and is subsequently extracted during active, convective hydrothermal circulation. Chapter 4 presents the results of culture experiments in which methane is oxidized in the presence of O₂ by the bacterium Methylococcus capsulatus strain Bath. The results show that the clumped isotopologue abundances of partially-oxidized methane can be predicted from knowledge of ¹³C/¹²C and D/H isotope fractionation factors alone. / by David Texan Wang. / Ph.D. in Geochemistry
529

Experimental visualization of the near-boundary hydrodynamics about fish-like swimming bodies

Techet, Alexandra Hughes January 2001 (has links)
Thesis (Ph. D.)--Joint Program in Applied Ocean Physics and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering and the Woods Hole Oceanographic Institution), 2001. / Includes bibliographical references (leaves 149-155). / This thesis takes a look at the near boundary flow about fish-like swimming bodies. Experiments were performed up to Reynolds number 106 using laser Doppler velocimetry and particle imaging techniques. The turbulence in the boundary layer of a waving mat and swimming robotic fish were investigated. How the undulating motion of the boundary controls both the turbulence production and the boundary layer development is of great interest. Unsteady motions have been shown effective in controlling flow. Tokumaru and Dimotakis (1991) demonstrated the control of vortex shedding, and thus the drag on a bluff body, through rotary oscillation of the body at certain frequencies. Similar results of flow control have been seen in fish-like swimming motions. Taneda and Tomonari (1974) illustrated that, for phase speeds greater than free stream velocity, traveling wave motion of a boundary tends to retard separation and reduce near-wall turbulence. In order to perform experiments on a two-dimensional waving plate, an apparatus was designed to be used in the MIT Propeller tunnel, a recirculating water tunnel. It is an eight-link piston driven mechanism that is attached to a neoprene mat in order to create a traveling wave motion down the mat. A correlation between this problem and that of a swimming fish is addressed herein, using visualization results obtained from a study of the MIT RoboTuna. The study of the MIT RoboTuna and a two-dimensional representation of the backbone of the robotic swimming fish was performed to further asses the implications of such motion on drag reduction. PIV experiments with the MIT RoboTuna indicate a laminarisation of the near boundary flow for swimming cases compared with non-swimming cases along the robot body. Laser Doppler Velocimetry (LDV) and PIV experiments were performed. / (cont.) LDV results show the reduction of turbulence intensity, near the waving boundary, for increasing phase speed up to 1.2 m/s after which the intensities begin to increase again through Cp = 2.0 where numerical simulations by Zhang (2000) showed separation reappearing on the back of the crests. Velocity profiles who an acceleration of the fluid beyond the inflow speed at the crest region increases with increased phase speed and no separation was present in the trough for the moving wall. The experimental techniques used are also discussed as they are applied in these experiments. / by Alexandra Hughes Techet. / Ph.D.
530

Seismic and gravitational studies of melting in the mantle's thermal boundary layers

Van Ark, Emily M January 2007 (has links)
Thesis (Ph. D.)--Joint Program in Marine Geology and Geophysics (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2007. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Includes bibliographical references (p. 167-196). / This thesis presents three studies which apply geophysical tools to the task of better understanding mantle melting phenomena at the upper and lower boundaries of the mantle. The first study uses seafloor bathymetry and small variations in the gravitational acceleration over the Hawaii-Emperor seamount chain to constrain the changes in the igneous production of the hot spot melting in the mantle which has created these structures over the past 80 My. The second study uses multichannel seismic reflection data to constrain the location and depth of axial magma chambers at the Endeavour Segment of the Juan de Fuca spreading ridge, and then correlates these magma chamber locations with features of the hydrothermal heat extraction system in the upper crust such as microseismicity caused by thermal cracking and high temperature hydrothermal vent systems observed on the seafloor. The third study uses two-dimensional global pseudospectral seismic wave propagation modeling to characterize the sensitivity of the SPdKS seismic phase to two-dimensional, finite-width ultra-low velocity zones (ULVZs) at the core-mantle boundary. Together these three studies highlight the dynamic complexities of melting in the mantle while offering new tools to understand that complexity. / by Emily Mary Van Ark. / Ph.D.

Page generated in 0.0412 seconds