• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ANALYZING THE IMPACT OF PHOTOVOLTAIC AND BATTERIE SYSTEMS ON THE LIFE OF A DISTRIBUTION TRANSFORMER

Mohamed Ali, Mohamed January 2021 (has links)
This degree project presents a study case in Eskilstuna-Sweden, regarding the effect of the photovoltaic (PV) systems with battery energy storage system (BESS) on a power distribution transformer, and how they could change the transformer lifespan. For that, an extensive literature review has been conducted, and two MATLAB models were used to simulate the system. One model simulates the PV generation profile, with the option of including battery in the system, and the other one simulates the transformer loss of life (LOL) based on the thermal characteristics. Simulations were using hourly time steps over a year with provided load profile based on utility data and typical meteorological year weather data from SMHI and STRÅNG. In this study, three different scenarios have been put into consideration to study the change of LOL. The first scenario applies various levels of PV penetrations without energy storage, while, the other scenarios include energy storage under different operating strategies, self-consumption, and peak shaving. Similarly, different battery capacities have been applied for the purpose of studying the LOL change. Thus, under different PV penetrations and battery capacities, results included the variation of LOL, grid power, battery energy status, and battery power. Moreover, results concluded that the PV system has the maximum impact on LOL variation, as it could decrease it by 33.4 %, and this percentage could increase by applying different battery capacities to the system. Finally, LOL corresponding to the battery under peak shaving strategy varies according to the battery discharge target. As different peak shaving targets were used to control the battery discharge, and hence, study the impact on the transformer and estimate its LOL.

Page generated in 0.0148 seconds