• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 466
  • 347
  • 124
  • 44
  • 37
  • 29
  • 12
  • 9
  • 8
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 1212
  • 1212
  • 431
  • 395
  • 383
  • 227
  • 220
  • 179
  • 144
  • 142
  • 136
  • 123
  • 98
  • 95
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Extent and limitations of functional redundancy among bacterial communities towards dissolved organic matter

Andersson, Martin January 2017 (has links)
One of the key processes in the carbon cycle on our planet is the degradation of dissolved organic matter (DOM) in aquatic environments. The use of organic matter by bacteria links energy from DOM to higher trophic levels of the ecosystem when bacteria are consumed by other organisms. This is referred to as the microbial loop. In this thesis I examined if the communities were functionally redundant in their ability to utilize organic matter, or if variation in bacterial composition and richness is of importance. To test this overarching question several experiments were conducted that include methods such as illumina sequencing of the 16S rRNA gene for taxonomic identification of bacterial communities, flow cytometry to follow the growth of communities and spectroscopic measurement to describe the composition of the organic matter pool. Initially we demonstrated how to optimally sterilize organic matter for experimental studies in order to preserve its natural complexity. In further experiments we found that bacterial communities are redundant in their utilization of organic matter and can maintain optimal performance towards a range of organic matter pools. Related to this we found that pre-adaptation to organic matter played a small role as communities performed equally well regardless of their environmental history. We saw a small effect of richness and composition of bacterial communities on the efficiency of organic matter use, but conclude that this is of minor importance relative to abiotic factors. Still, we also show that organic matter can put strong selection pressure on bacterial communities with regards to richness and composition. Additionally we found that the supply rate of a carbon compound greatly influenced the energy utilization of the compound, i.e. a higher growth rate can be maintained if substrate is delivered in pulses relative to a continuous flow. Finally we conclude that the variation in bacterial communities is unlikely to have a major influence on carbon cycling in boreal lakes, but to enable a finer understanding, the genetics underlying the carbon utilization needs to be further explored.
102

Hydro-Physical Characterization of Media Used in Agricultural Systems to Develop the Best Management Practices for operation of an Environmentally Sustainable Agricultural Enterprise

Kumar, Vivek 09 November 2012 (has links)
Florida is the second leading horticulture state in the United States with a total annual industry sale of over $12 Billion. Due to its competitive nature, agricultural plant production represents an extremely intensive practice with large amounts of water and fertilizer usage. Agrochemical and water management are vital for efficient functioning of any agricultural enterprise, and the subsequent nutrient loading from such agricultural practices has been a concern for environmentalists. A thorough understanding of the agrochemical and the soil amendments used in these agricultural systems is of special interest as contamination of soils can cause surface and groundwater pollution leading to ecosystem toxicity. The presence of fragile ecosystems such as the Everglades, Biscayne Bay and Big Cypress near enterprises that use such agricultural systems makes the whole issue even more imminent. Although significant research has been conducted with soils and soil mix, there is no acceptable method for determining the hydraulic properties of mixtures that have been subjected to organic and inorganic soil amendments. Hydro-physical characterization of such mixtures can facilitate the understanding of water retention and permeation characteristics of the commonly used mix which can further allow modeling of soil water interactions. The objective of this study was to characterize some of the locally and commercially available plant growth mixtures for their hydro-physical properties and develop mathematical models to correlate these acquired basic properties to the hydraulic conductivity of the mixture. The objective was also to model the response patterns of soil amendments present in those mixtures to different water and fertilizer use scenarios using the characterized hydro-physical properties with the help of Everglades-Agro-Hydrology Model. The presence of organic amendments helps the mixtures retain more water while the inorganic amendments tend to adsorb more nutrients due to their high surface area. The results of these types of characterization can provide a scientific basis for understanding the non-point source water pollution from horticulture production systems and assist in the development of the best management practices for the operation of environmentally sustainable agricultural enterprise
103

The occurrence and mobility of arsenic in soils and sediments : assessing environmental controls

Hegan, Aimee January 2012 (has links)
Elevated levels of arsenic (As) in soils and water around the world are both a significant human health and environmental hazard. With increasing global water demands, there is a requirement to further the understanding of the biogeochemical cycling of As from soils and sediments. This thesis focussed on exploring the environmental controls on the occurrence and subsequent mobility of As in a range of natural environments. Arsenic was found to undergo mobilisation from both river sediments and upland peats under changing environmental conditions. The transport of As was found to be correlated with both iron (Fe) and organic carbon (OC), however temporal changes in both sediment/soil composition and movement of water through catchments have a important role in controlling the ultimate transport of As within the environment. A range of investigative methods were employed to study the occurrence and mobility of As within the river sediments of the Allier and Loire Rivers (France), including sequential extraction procedures and batch incubation studies. Arsenic was associated with the reducible phases of sediments, indicating the major role of Fe(oxy)hydroxides in the storage of As in river sediments. In addition to the presence of labile As, the rapid release of As was dependent on the initial sediment composition. Temporal changes in sediment composition may therefore play an important role in controlling the movement of As within fluvial systems. The combination of lead (Pb) and strontium (Sr) isotopic analysis with sequential extraction studies of sediments from the Loire and Allier Rivers was able to determine the relative dominance of granites and basalts within the sediments. This approach provided a first order study on which to better understand the mineral origins of the sediments. The analysis of multiple Pb isotopes was able to eliminate possible anthropogenic contribution to contamination within the sediments, confirming the importance of geogenic cycling of As within the rivers. Information on the origin of mineral formation was obtained through 87Sr/86Sr isotopic analysis, with the formation of Fe-minerals not occurring uniformly along the course of the rivers. While the Sr within the sediment phase targeting well-crystallised Fe(oxy)hydroxides was in equilibrium with the sampled river water, the formation of amorphous Fe minerals was likely occurring in waters upstream of the study sites, within the Massif Central. Total concentration profiles peat from two subcatchments within the Peak District (United Kingdom) provided evidence for both the retention and post depositional movement (PDM) of As within the solid phase, dependent on local conditions. For the first time, the partitioning of As was determined within ombrotrophic peat, and found to be in contrast to Pb, with oxidisible As (likely associated with organic matter) dominating, while Pb was found predominantly within the reducible sediment phase. High temporal resolution monitoring of the organic-rich streamwater draining the peat showed the transport of As was variable, with As found largely in the soluble form despite extensive peat erosion. The evidence for PDM, and the subsequent soluble transport of As demonstrated the importance of biogeochemical processes in releasing As from the solid phase. Once mobilised, both the ratio of Fe:OC and the form of Fe were found to be factors controlling transport of As, with the flushing of stored porewaters an important contribution to As transport from the peat. Despite OC-rich waters, the occurrence of high concentrations of Fe may dominate control of As within the aqueous phase. At relatively high (>0.2) Fe:OC ratios, the particle size distribution of As was closely correlated with that of >1um Fe, although the presence of dissolved and colloidal As was found even within these waters. Given the temporal variability of As transport within the streams, knowledge of the mixing order and ratio between Fe, OC, and As within natural waters may be required for prediction of the mobility and ultimate fate of As.
104

Local Biomass Control on the Composition and Reactivity of Particulate Organic Matter in Aquatic Environments

Pisani, Olivia 11 May 2011 (has links)
Freshwater ecosystems have been recognized as important components of the global carbon cycle, and the flux of organic matter (OM) from freshwater to marine environments can significantly affect estuarine and coastal productivity. The focus of this study was the assessment of carbon dynamics in two aquatic environments, namely the Florida Everglades and small prairie streams in Kansas, with the aim of characterizing the biogeochemistry of OM. In the Everglades, particulate OM (POM) is mostly found as a layer of flocculent material (“floc”). While floc is believed to be the main energy source driving trophic dynamics in this oligotrophic wetland, not much is known about its biogeochemistry. The objective of this study was to determine the origin/sources of OM in floc using biomarkers and pigment-based chemotaxonomy to assess specific biomass contributions to this material, on a spatial (freshwater marshes vs. mangrove fringe) and seasonal (wet vs. dry) scales. It was found that floc OM is derived from the local vegetation (mainly algal components and macrophyte litter) and its composition is controlled by seasonal drivers of hydrology and local biomass productivity. Photo-reactivity experiments showed that light exposure on floc resulted in photo-dissolution of POC with the generation of significant amounts of both dissolved OM (DOM) and nutrients (N & P), potentially influencing nutrient dynamics in this ecosystem. The bio-reactivity experiments determined as the amount and rate of CO2 evolution during incubation were found to vary on seasonal and spatial scales and were highly influenced by phosphorus limitation. Not much is known on OM dynamics in small headwater streams. The objective of this study was to determine carbon dynamics in sediments from intermittent prairie streams, characterized by different vegetation cover for their watershed (C4 grasses) vs. riparian zone (C3 plants). In this study sedimentary OM was characterized using a biomarker and compound specific carbon stable isotope approach. It was found that the biomarker composition of these sediments is dominated by higher plant inputs from the riparian zone, although inputs from adjacent prairie grasses were also apparent. Conflicting to some extent with the River Continuum Concept, sediments of the upper reaches contained more degraded OM, while the lower reaches were enriched in fresh material deriving from higher plants and plankton sources as a result of hydrological regimes and particle sorting.
105

Emissões de CO2 : efeito da rotação de culturas e preparo do solo na renovação do canavial / CO2 emissions : effect of crop rotation and soil tillage on the renewal of cane field

Farhate, Camila Viana Vieira, 1989- 28 August 2018 (has links)
Orientadores: Zigomar Menezes de Souza, João Luís Nunes Carvalho / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-28T08:47:30Z (GMT). No. of bitstreams: 1 Farhate_CamilaVianaVieira_M.pdf: 1389650 bytes, checksum: dfc7da8cbdf154612091a7f2192cb780 (MD5) Previous issue date: 2015 / Resumo: A influência de práticas agrícolas na emissão de gases do efeito estufa é assunto de grande interesse, especialmente quando se trata do CO2, o principal componente do efeito estufa adicional. O preparo do solo é uma das atividades agrícolas que mais promove a decomposição de matéria orgânica e emissões de CO2 para a atmosfera. O rompimento dos agregados de solo promovido pelo preparo convencional, expõe a matéria orgânica, conduzindo à oxidação rápida e fluxo de CO2 para a atmosfera. Logo, acredita-se que a adoção do sistema de plantio com preparo do solo reduzido conciliado a rotação de culturas na cana-de-açúcar possa contribuir para um balanço positivo do CO2. Portanto, a pesquisa baseia-se nas seguintes hipóteses: i) As operações de preparo do solo de forma convencional associadas à adoção da rotação de culturas com Crotalária juncea potencializam as emissões de CO2 do solo ii) A rotação de culturas na cana-de-açúcar, em solos de textura arenosa, proporciona maiores variações no fluxo de CO2 solo e nos atributos do solo em relação aos solos de textura argilosa. Dessa maneira, o objetivo deste estudo foi avaliar o efeito do preparo do solo e da rotação de culturas no fluxo de CO2 e suas correlações com os atributos de dois solos de classes texturais distintas, cultivados com cana-de-açúcar. O trabalho foi conduzido em condições de campo em duas usinas do estado de São Paulo. O delineamento experimental foi o de blocos ao acaso no esquema de parcelas subdivididas com quatro repetições. A parcela envolve área com e sem rotação e a subparcela duas condições de preparo de solo (cultivo mínimo e preparo convencional). Cada subparcela foi composta por 15 linhas de cana-de-açúcar, com espaçamento de 1,5 m e 34 m de comprimento. Foram realizadas avaliações periódicas nas áreas visando acompanhar modificações no fluxo de CO2 nos atributos químicos, físicos, carbono da biomassa microbiana. Houve maior emissão de CO2 na área de solo argiloso. A rotação de culturas aumentou o FCO2 apenas na área de solo arenoso devido os resíduos de culturas provenientes da rotação de culturas terem modificado os atributos físicos que favoreceram o FCO2. O FCO2 foi maior na área de solo argiloso em relação ao solo arenoso. Nas áreas de solo arenoso e argiloso o efeito do preparo foi pouco claro, tendo mais destaque a rotação de culturas sobre os atributos do solo / Abstract: The influence of agricultural practices on the issue of greenhouse gases is a matter of great interest, especially when it comes to CO2, the main component of the additional greenhouse effect. Soil preparation is one of the agricultural activities that will promote the decomposition of organic matter and CO2 emissions to the atmosphere. Disruption of aggregates of the soil by conventional tillage promoted, exposes the organic matter oxidation and leading to the rapid flow of CO2 into the atmosphere. Therefore, it is believed that the adoption of planting system with reduced soil preparation reconciled crop rotation in the culture of sugar cane can contribute to a positive balance of CO2. Therefore, the research is based on the following assumptions: i) the preparation of conventional soil operation associated with the adoption of crop rotation with Crotalaria juncea potentiate the CO2 emissions of the soil ii) Crop rotation in sugar cane, in sandy soils, provides greater variations in soil CO2 flux and soil properties in relation to clayey soils. Thus, the aim of this study was to evaluate the effect of tillage and crop rotation on a CO2 stream and their correlation with the attributes of two different textural classes of soils cultivated with sugar cane. The work was conducted under field conditions in two plants in the state of São Paulo. The experimental design was a randomized block in split plot with four replications. The plot involves an area with and without rotation and the subplots two soil preparation conditions (minimum tillage and conventional tillage). Each subplot consisted of 15 lines of sugar cane, with spacing of 1.5 m and 34 m long. Periodic evaluations were performed in order to monitor changes in the areas of CO2 flow in the chemical, physical, microbial biomass carbon. There was a higher CO2 emissions of the clay soil area. Crop rotation increased FCO2 only in sandy soil area because the crop residues from crop rotation have modified the physical attributes that favored FCO2. The FCO2 was higher in clay soil area in relation to the sandy soil. In the areas of sandy soil and clay the effect of the preparation was unclear, with more emphasis in crop rotation on the soil / Mestrado / Agua e Solo / Mestra em Engenharia Agrícola
106

Different Approaches to investigate the interfacial interactions between Natural Organic Matter and Metal Oxide

Zaouri, Noor A. 12 1900 (has links)
A variety of approaches were conducted to obtain a comprehensive understanding of the adsorption of Natural Organic Matter (NOM) isolates on metal oxides (MeO). Adsorption experiments with a series of small molecular weight (MW), oxygenated, aromatic organic acids were performed with Aluminum oxide (Al2O3), Titanium oxide (TiO2), and Zirconium oxide (ZrO2) surface. The experiments were conducted in batch mode at pH 4.2 and 7.6. The adsorption of simple organic acids was described by Langmuir model, and exhibited strong dependence on the relative abundance of carboxyl group, aliphaticity/aromaticity, length of alkyl chain, and the presence of hydroxyl group. The adsorption of the model compounds was high at low pH and decreased with increasing the pH. Isolated NOM fraction of strong humic character, i.e., hydrophobic (HPO) (high in MW, aromaticity, and acidity), i.e., Suwannee River fulvic acid (SRW HPO), showed strong adsorption on all MeO. However, fractions with similar acidic character, and lower MW exerted weak adsorption. NOM fraction that incorporated polysaccharides and proteins like structures (i.e., biopolymers) was not significantly adsorbed compared to HPO fractions. Interestingly, biopolymer adsorption on Heated Aluminum oxide particles (HAOP) was higher than that on Al2O3, TiO2, and ZrO2. These different adsorption profiles were related to their physicochemical characteristics of NOM and MeO, and thus, showed different interacting mechanisms and were studied by Atomic Force Microscopy (AFM). Hydrogen bonding was suggested as the main mechanism between NOM of strong hydrophilic character (i.e., biopolymers) and Al2O3, TiO2 and ZrO2 coated wafers. The strength of the hydrogen bonding was influenced by the hydrophilicity degree of MeO surface, ionic strength, and cation type. NOM fractions with strong humic character showed repulsive forces that are electrostatic in nature with MeO of high negative charge density. Hydrogen bonding and ligand exchange mechanisms are proposed to control the adsorption mechanism at high ionic strength with less negatively-charged MeO surface. Strong interactions forces was recorded between NOM molecules with different properties, more specifically with high MW humic and non humic fractions. These forces are controlled by cation type, and NOM chemical structure.
107

Bacterial Dynamics in Lake Biwa: from the viewpoints of the interaction with dissolved organic matter and viruses / 琵琶湖における細菌動態の解明~溶存有機物およびウイルスの観点から~

Shang, Shen 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22429号 / 工博第4690号 / 新制||工||1732(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 清水 芳久, 教授 田中 宏明, 教授 米田 稔 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
108

Mineral and Redox Controls on Soil Carbon Cycling in Seasonally Flooded Soils

LaCroix, Rachelle 25 October 2018 (has links)
Soils contain nearly three times the amount of carbon (C) than the atmosphere, with C turnover times ranging from centuries to millennia. Although wetland soils represent a relatively small portion of the terrestrial landscape, they account for an estimated 20-30% of the global C reservoir. Seasonally flooded soils are likely the most vulnerable wetlands to climate change, as changing temperature and precipitation patterns are expected to alter the timing and duration of flooding. Seasonal variations in soil moisture are recognized as a critical control on soil C stocks and CO2emissions. However, the relative influence of associated changes in soil oxygen availability, root dynamics and the stability of mineral-organic associations are largely unknown. The overarching goal of this study was to examine the relative influence of redox state, root density and mineralogy on C cycling within seasonally flooded soil. To accomplish this goal, we combined seasonal monitoring of soil moisture, redox potential, and carbon dioxide emissions with a characterization of organic matter composition, mineralogy and root biomass along upland to lowland transects. We found that water saturation was the limiting factor for CO2emissions from seasonal flooded lowland soils, whereas soil temperature primarily regulated emissions from upland soils. Seasonal water saturation also resulted in topsoil C accumulation in lowlands compared to uplands, despite experiencing prolonged aerobic periods. Moreover, the C that accumulated in lowland topsoils was more chemically reduced compared to upland soils. However, the C chemistry in the subsoil showed the opposite trend of being more reduced in uplands compared to lowland subsoils. In sum, our results suggest that anaerobically protected soil C in seasonal flooded soils is particularly vulnerable to changing moisture regimes in response to climate change. To what extent this expected C loss is compensated by upland plant encroachment, or the neoformation of mineral-organic associations, warrants future research.
109

Půdní mikrobiální společenstva přispívající k rezistenci a resilienci půdního prostředí v agroekosystémech a na přírodních stanovištích / Soil microbial communities in agroecosystems and natural habitats contributing to resistance and resilience of the soil environment

Sarikhani, Ensyeh January 2020 (has links)
Ensyeh Sarikhani Soil microbial communities in agroecosystems and natural habitats contributing to resistance and resilience of the soil environment. Summary The control of common scab of potatoes (CS) includes resistant varieties (cultivars), precise fertilization, increase of soil moisture, and chemical treatments. Yet, these management practices do not have common or reproducible results at differing sites. A monitoring study was done in 32 sites to evaluate the relation between CS and biological/chemical soil parameters. Correlations were observed between scab severity and content of nutrients such as Fe, N, and Ca in soil and periderm, and between disease severity and abundance of actinobacteria and total bacteria, together with the pathogenicity determinant, txtB gene (biosynthetic gene of thaxtomin) in both soil and periderm of potatoes. The findings led to novel conclusions, which can help to understand relationships applicable in scab control. Peat and DTPA chelated iron were supplemented to pots filled with soil conducive for CS in order to determine the effects of soil organic matter, iron and pH on CS development. The results were compared with data obtained for a suppressive soil from a nearby field with naturally low CS severity. Both peat and iron supplements decreased CS and the combination...
110

Application of Pre-coated Microfiltration Ceramic Membrane with Powdered Activated Carbon for Natural Organic Matter Removal from Secondary Wastewater Effluent

Kurniasari, Novita 12 1900 (has links)
Ceramic membranes offer more advantageous performances than conventional polymeric membranes. However, membrane fouling caused by Natural Organic Matters (NOM) contained in the feed water is still become a major problem for operational efficiency. A new method of ceramic membrane pre-coating with Powdered Activated Carbon (PAC), which allows extremely contact time for adsorbing aquatic contaminants, has been studied as a pre-treatment prior to ceramic microfiltration membrane. This bench scale study evaluated five different types of PAC (SA Super, G 60, KCU 6, KCU 8 and KCU 12,). The results showed that KCU 6 with larger pore size was performed better compared to other PAC when pre-coated on membrane surface. PAC pre-coating on the ceramic membrane with KCU 6 was significantly enhance NOM removal, reduced membrane fouling and improved membrane performance. Increase of total membrane resistance was suppressed to 96%. The removal of NOM components up to 92%, 58% and 56% for biopolymers, humic substances and building blocks, respectively was achieved at pre-coating dose of 30 mg/l. Adsorption was found to be the major removal mechanism of NOM. Results obtained showed that biopolymers removal are potentially correlated with enhanced membrane performance.

Page generated in 0.0802 seconds