Spelling suggestions: "subject:"OWL ontologies"" "subject:"OWL antologies""
1 |
Module-based classification of OWL ontologiesMatentzoglu, Nicolas Alexander January 2016 (has links)
Classification is a core reasoning service provided by most OWL reasoners. Classification in general is hard - up to 2NExptime for SROIQ(D), the Description Logic which is underpinning the Web Ontology Language (OWL). While it has been shown that classification is practical for a wide range of inputs, there are still ontologies for which classification takes an unreasonable amount of time for purposes such as ontology engineering (frequent classifications after updates). A natural optimisation strategy is divide and conquer, that is, to decompose the ontology into subsets which are hopefully easier to classify and whose classifications can be combined into a complete classification of the whole ontology. Unfortunately, an arbitrary subset may not be self-contained, i.e. it might be missing information that is needed to determine entailments over its signature. Moreover, such a subset can be potentially harder to classify than the whole ontology. In order to mitigate those problems, classification preserving decompositions (CPDs) must be designed with care that they support complete classification which is, in practice, more efficient than monolithic classification. Locality-based modules are subsets of an ontology that provide certain guarantees with respect to the entities (concepts, roles) in its signature - in particular, modules are self-contained. In this thesis we explore the use of syntactic locality-based modules for underpinning classification-preserving decompositions. In particular, we empirically explore their potential to avoid subsumption tests and reduce subsumption test hardness and weigh those benefits against detrimental effects such as overhead (for example the time it takes to compute the decomposition) and redundancy (a consequence of potentially overlapping chunks in the decomposition). The main contributions of this thesis are an in-depth empirical characterisation of these effects, an extensible framework for observing CPDs in action up until a granularity of individual subsumption tests, a large, public corpus of observations and its analysis and insights on experimental methodologies around OWL reasoning.
|
2 |
Impact analysis in description logic ontologiesGoncalves, Joao Rafael Landeiro De sousa January 2014 (has links)
With the growing popularity of the Web Ontology Language (OWL) as a logic-based ontology language, as well as advancements in the language itself, the need for more sophisticated and up-to-date ontology engineering services increases as well. While, for instance, there is active focus on new reasoners and optimisations, other services fall short of advancing at the same rate (it suffices to compare the number of freely-available reasoners with ontology editors). In particular, very little is understood about how ontologies evolve over time, and how reasoners’ performance varies as the input changes. Given the evolving nature of ontologies, detecting and presenting changes (via a so-called diff) between them is an essential engineering service, especially for version control systems or to support change analysis. In this thesis we address the diff problem for description logic (DL) based ontologies, specifically OWL 2 DL ontologies based on the SROIQ DL. The outcomes are novel algorithms employing both syntactic and semantic techniques to, firstly, detect axiom changes, and what terms had their meaning affected between ontologies, secondly, categorise their impact (for example, determining that an axiom is a stronger version of another), and finally, align changes appropriately, i.e., align source and target of axiom changes (so the stronger axiom with the weaker one, from our example), and axioms with the terms they affect. Subsequently, we present a theory of reasoner performance heterogeneity, based on field observations related to reasoner performance variability phenomena. Our hypothesis is that there exist two kinds of performance behaviour: an ontology/reasoner combination can be performance-homogeneous or performance-heterogeneous. Finally, we verify that performance-heterogeneous reasoner/ontology combinations contain small, performance-degrading sets of axioms, which we call hot spots. We devise a performance hot spot finding technique, and show that hot spots provide a promising basis for engineering efficient reasoners.
|
3 |
ONTO-Analyst: um método extensível para a identificação e visualização de anomalias em ontologias / ONTO-Analyst: An Extensible Method for the Identification and the Visualization of Anomalies in OntologiesOrlando, João Paulo 21 August 2017 (has links)
A Web Semântica é uma extensão da Web em que as informações tem um significado explícito, permitindo que computadores e pessoas trabalhem em cooperação. Para definir os significados explicitamente, são usadas ontologias na estruturação das informações. À medida que mais campos científicos adotam tecnologias da Web Semântica, mais ontologias complexas são necessárias. Além disso, a garantia de qualidade das ontologias e seu gerenciamento ficam prejudicados quanto mais essas ontologias aumentam em tamanho e complexidade. Uma das causas para essas dificuldades é a existência de problemas, também chamados de anomalias, na estrutura das ontologias. Essas anomalias englobam desde problemas sutis, como conceitos mal projetados, até erros mais graves, como inconsistências. A identificação e a eliminação de anomalias podem diminuir o tamanho da ontologia e tornar sua compreensão mais fácil. Contudo, métodos para identificar anomalias encontrados na literatura não visualizam anomalias, muitos não trabalham com OWL e não são extensíveis por usuários. Por essas razões, um novo método para identificar e visualizar anomalias em ontologias, o ONTO-Analyst, foi criado. Ele permite aos desenvolvedores identificar automaticamente anomalias, usando consultas SPARQL, e visualizá-las em forma de grafos. Esse método usa uma ontologia proposta, a METAdata description For Ontologies/Rules (MetaFOR), para descrever a estrutura de outras ontologias, e consultas SPARQL para identificar anomalias nessa descrição. Uma vez identificadas, as anomalias podem ser apresentadas na forma de grafos. Um protótipo de sistema, chamado ONTO-Analyst, foi criado para a validação desse método e testado em um conjunto representativo de ontologias, por meio da verificação de anomalias representativas. O protótipo testou 18 tipos de anomalias retirados da literatura científica, em um conjunto de 608 ontologias OWL de 4 repositórios públicos importantes e dois artigos. O sistema detectou 4,4 milhões de ocorrências de anomalias nas 608 ontologias: 3,5 milhões de ocorrências de um mesmo tipo e 900 mil distribuídas em 11 outros tipos. Essas anomalias ocorreram em várias partes das ontologias, como classes, propriedades de objetos e de dados, etc. Num segundo teste foi realizado um estudo de caso das visualizações geradas pelo protótipo ONTO-Analyst das anomalias encontradas no primeiro teste. Visualizações de 11 tipos diferentes de anomalias foram automaticamente geradas. O protótipo mostrou que cada visualização apresentava os elementos envolvidos na anomalia e que pelo menos uma solução podia ser deduzida a partir da visualização. Esses resultados demonstram que o método pode eficientemente encontrar ocorrências de anomalias em um conjunto representativo de ontologias OWL, e que as visualizações facilitam o entendimento e correção da anomalia encontrada. Para estender os tipos de anomalias detectáveis, usuários podem escrever novas consultas SPARQL. / The Semantic Web is an extension of the World Wide Web in which the information has explicit meaning, allowing computers and people to work in cooperation. In order to explicitly define meaning, ontologies are used to structure information. As more scientific fields adopt Semantic Web technologies, more complex ontologies are needed. Moreover, the quality assurance of the ontologies and their management are undermined as these ontologies increase in size and complexity. One of the causes for these difficulties is the existence of problems, also called anomalies, in the ontologies structure. These anomalies range from subtle problems, such as poorly projected concepts, to more serious ones, such as inconsistencies. The identification and elimination of anomalies can diminish the ontologies size and provide a better understanding of the ontologies. However, methods to identify anomalies found in the literature do not provide anomaly visualizations, many do not work on OWL ontologies or are not user extensible. For these reasons, a new method for anomaly identification and visualization, the ONTO-Analyst, was created. It allows ontology developers to automatically identify anomalies, using SPARQL queries, and visualize them as graph images. The method uses a proposed ontology, the METAdata description For Ontologies/Rules (MetaFOR), to describe the structure of other ontologies, and SPARQL queries to identify anomalies in this description. Once identified, the anomalies can be presented as graph images. A system prototype, the ONTO-Analyst, was created in order to validate this method and it was tested in a representative set of ontologies, trough the verification of representative anomalies. The prototype tested 18 types of anomalies, taken from the scientific literature, in a set of 608 OWL ontologies from major public repositories and two articles. The system detected 4.4 million anomaly occurrences in the 608 ontologies: 3.5 million occurrences from the same type and 900 thousand distributed in 11 other types. These anomalies occurred in various parts of the ontologies, such as classes, object and data properties, etc. In a second test, a case study was performed in the visualizations generated by the ONTO-Analyst prototype, from the anomalies found in the first test. It was shown that each visualization presented the elements involved in the anomaly and that at least one possible solution could be deduced from the visualization. These results demonstrate that the method can efficiently find anomaly occurrences in a representative set of OWL ontologies and that the visualization aids in the understanding and correcting of said anomalies. In order to extend the types of detectable anomalies, users can write new SPARQL queries.
|
4 |
OWL transformavimas į reliacinių duomenų bazių schemas / Transformation of OWL to Relational Database SchemasPetrikas, Giedrius 26 August 2010 (has links)
Ontologijų aprašymai yra dažniausiai naudojami semantiniame žiniatinklyje (Semantic Web/Web 2.0), tačiau pastaruoju metu jie randa vis daugiau ir daugiau pritaikymo kasdienėms informacijos sistemoms. Puikiai suformuota ontologija privalo turėti teisingą sintaksę ir nedviprasmišką mašinai suprantamą interpretaciją, tokiu būdu ji gali aiškiai apibrėžti fundamentalias sąvokas ir ryšius probleminėje srityje. Ontologijos vis plačiau naudojamos įvairiuose taikymuose: verslo procesų ir informacijos integravime, paieškoje ir žvalgyme. Tokie taikymai reikalauja geros greitaveikos, efektyvaus saugojimo ir didelio mąsto ontologinių duomenų manipuliavimo. Kai ontologijomis paremtos sistemos auga tiek akiračiu, tiek apimtimi, specialistų sistemose naudojami samprotavimo varikliai tampa nebetinkami. Tokiomis aplinkybėmis, ontologijų saugojimas reliacinėse duomenų bazėse tampa būtinas semantiniame žiniatinklyje ir įmonėse. Šiame darbe atsakoma į klausimą kokiu būdu OWL ontologijas galima efektyviai transformuoti į reliacinių duomenų bazių schemas. / Ontology descriptions are typically used in Semantic Web/Web2.0, but nowadays they find more and more adaptability in everyday Information Systems. Well-formed ontology must have correct syntax and unambiguous machine-understandable interpretation, so it is capable to clearly defining fundamental concepts and relationships of the problem domain.
Ontologies are increasingly used in many applications: business process and information integration, search and navigation. Such applications require scalability and performance, efficient storage and manipulation of large scale ontological data. In such circumstances, storing ontologies in relational databases are becoming the relevant needs for Semantic Web and enterprises.
For ontology development, Semantic Web languages are dedicated: Resource Description Framework (RDF) and schema RDFS, and Web Ontology Language (OWL) that consists of three sublanguages – OWL Lite, OWL Description Logic (DL) and OWL Full. When ontology based systems are growing in scope and volume, reasoners of expert systems are becoming unsuitable.
In this work an algorithm which fully automatically transforms ontologies, represented in OWL, to RDB schemas is proposed. Some concepts, e.g. ontology classes and properties are mapped to relational tables, relations and attributes, other (constraints) are stored like metadata in special tables. Using both direct mapping and metadata, it is possible to obtain appropriate relational structures and not to lose the... [to full text]
|
5 |
ONTO-Analyst: um método extensível para a identificação e visualização de anomalias em ontologias / ONTO-Analyst: An Extensible Method for the Identification and the Visualization of Anomalies in OntologiesJoão Paulo Orlando 21 August 2017 (has links)
A Web Semântica é uma extensão da Web em que as informações tem um significado explícito, permitindo que computadores e pessoas trabalhem em cooperação. Para definir os significados explicitamente, são usadas ontologias na estruturação das informações. À medida que mais campos científicos adotam tecnologias da Web Semântica, mais ontologias complexas são necessárias. Além disso, a garantia de qualidade das ontologias e seu gerenciamento ficam prejudicados quanto mais essas ontologias aumentam em tamanho e complexidade. Uma das causas para essas dificuldades é a existência de problemas, também chamados de anomalias, na estrutura das ontologias. Essas anomalias englobam desde problemas sutis, como conceitos mal projetados, até erros mais graves, como inconsistências. A identificação e a eliminação de anomalias podem diminuir o tamanho da ontologia e tornar sua compreensão mais fácil. Contudo, métodos para identificar anomalias encontrados na literatura não visualizam anomalias, muitos não trabalham com OWL e não são extensíveis por usuários. Por essas razões, um novo método para identificar e visualizar anomalias em ontologias, o ONTO-Analyst, foi criado. Ele permite aos desenvolvedores identificar automaticamente anomalias, usando consultas SPARQL, e visualizá-las em forma de grafos. Esse método usa uma ontologia proposta, a METAdata description For Ontologies/Rules (MetaFOR), para descrever a estrutura de outras ontologias, e consultas SPARQL para identificar anomalias nessa descrição. Uma vez identificadas, as anomalias podem ser apresentadas na forma de grafos. Um protótipo de sistema, chamado ONTO-Analyst, foi criado para a validação desse método e testado em um conjunto representativo de ontologias, por meio da verificação de anomalias representativas. O protótipo testou 18 tipos de anomalias retirados da literatura científica, em um conjunto de 608 ontologias OWL de 4 repositórios públicos importantes e dois artigos. O sistema detectou 4,4 milhões de ocorrências de anomalias nas 608 ontologias: 3,5 milhões de ocorrências de um mesmo tipo e 900 mil distribuídas em 11 outros tipos. Essas anomalias ocorreram em várias partes das ontologias, como classes, propriedades de objetos e de dados, etc. Num segundo teste foi realizado um estudo de caso das visualizações geradas pelo protótipo ONTO-Analyst das anomalias encontradas no primeiro teste. Visualizações de 11 tipos diferentes de anomalias foram automaticamente geradas. O protótipo mostrou que cada visualização apresentava os elementos envolvidos na anomalia e que pelo menos uma solução podia ser deduzida a partir da visualização. Esses resultados demonstram que o método pode eficientemente encontrar ocorrências de anomalias em um conjunto representativo de ontologias OWL, e que as visualizações facilitam o entendimento e correção da anomalia encontrada. Para estender os tipos de anomalias detectáveis, usuários podem escrever novas consultas SPARQL. / The Semantic Web is an extension of the World Wide Web in which the information has explicit meaning, allowing computers and people to work in cooperation. In order to explicitly define meaning, ontologies are used to structure information. As more scientific fields adopt Semantic Web technologies, more complex ontologies are needed. Moreover, the quality assurance of the ontologies and their management are undermined as these ontologies increase in size and complexity. One of the causes for these difficulties is the existence of problems, also called anomalies, in the ontologies structure. These anomalies range from subtle problems, such as poorly projected concepts, to more serious ones, such as inconsistencies. The identification and elimination of anomalies can diminish the ontologies size and provide a better understanding of the ontologies. However, methods to identify anomalies found in the literature do not provide anomaly visualizations, many do not work on OWL ontologies or are not user extensible. For these reasons, a new method for anomaly identification and visualization, the ONTO-Analyst, was created. It allows ontology developers to automatically identify anomalies, using SPARQL queries, and visualize them as graph images. The method uses a proposed ontology, the METAdata description For Ontologies/Rules (MetaFOR), to describe the structure of other ontologies, and SPARQL queries to identify anomalies in this description. Once identified, the anomalies can be presented as graph images. A system prototype, the ONTO-Analyst, was created in order to validate this method and it was tested in a representative set of ontologies, trough the verification of representative anomalies. The prototype tested 18 types of anomalies, taken from the scientific literature, in a set of 608 OWL ontologies from major public repositories and two articles. The system detected 4.4 million anomaly occurrences in the 608 ontologies: 3.5 million occurrences from the same type and 900 thousand distributed in 11 other types. These anomalies occurred in various parts of the ontologies, such as classes, object and data properties, etc. In a second test, a case study was performed in the visualizations generated by the ONTO-Analyst prototype, from the anomalies found in the first test. It was shown that each visualization presented the elements involved in the anomaly and that at least one possible solution could be deduced from the visualization. These results demonstrate that the method can efficiently find anomaly occurrences in a representative set of OWL ontologies and that the visualization aids in the understanding and correcting of said anomalies. In order to extend the types of detectable anomalies, users can write new SPARQL queries.
|
6 |
Construção de Ontologias de Domínio a Partir de Mapas Conceituais / Construction of domain ontologies from conceptual maps.Macedo, Gretchen Torres de 14 May 2007 (has links)
Made available in DSpace on 2015-04-11T14:03:22Z (GMT). No. of bitstreams: 1
Gretchen Torres de Macedo.pdf: 2254096 bytes, checksum: a92696f086cab0a30ffe0ff73682aa0f (MD5)
Previous issue date: 2007-05-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Ontologies have been built and used in a variety of applications as a form of knowledge representation that is meant for software systems, or agents, as well as for human users. In relation to ontologies, conceptual maps are a more informal, simple and, thus, accessible form of knowledge representation. However, the freedom enjoyed in defining concepts and their links makes it dificult to directly draw formal representations from conceptual maps. This work presents a transcription process that is able to transform conceptual maps into ontologies specified in OWL (Web Ontology Language). In this way, the ease of construction of conceptual maps can be taken advantage of to alleviate the knowledge acquisition bottleneck that is inherent in ontology engineering. The translation process consists of two main stages: translation and merging. In the translation stage a group of conceptual maps about the same knowledge domain is transformed into a set of preliminary ontologies by mens of a translator module software. In the merging stage, ontology
merging techniques are applied to the set of preliminary ontologies so as to yield a single unified ontology. This phase has been achieved by means of an available merging tool.
Experiments for building conceptual maps have also been done and submited to the two phases of the translation process, in order to evaluate it. / Ontologias têm sido construídas e utilizadas em diversas aplicações como um modelo de representação de conhecimento compartilhável entre agentes de software e usuários. Mapas conceituais, por sua vez, são um modelo de representação do conhecimento que, em relação às ontologias, é informal, menos complexo e, portanto, de fácil elaboração. Entretanto, a liberdade permitida na definição de conceitos e relações nos mapas dificulta a transcrição direta desses modelos em representações formais que possam ser utilizadas em aplicações baseadas em conhecimento. Este trabalho apresenta um processo de transcrição de mapas conceituais em ontologias especificadas em OWL (Web Ontology Language), tornando possível o aproveitamento
da facilidade de elaboração oferecida por mapas conceituais no processo de construção de ontologias de domínio. O processo de transcrição consiste de duas etapas principais:
tradução e mesclagem. A etapa de tradução consiste na obtenção de ontologias intermediárias a partir de um conjunto de mapas conceituais tendo sido realizada mediante o desenvolvimento de uma ferramenta de software. A etapa de mesclagem, responsável por unificar as ontologias intermediárias obtidas na primeira etapa, foi realizada através
da utilização de uma ferramenta de mesclagem existente. Foram ainda realizadas experiências de produção de mapas conceituais, os quais foram submetidos às ferramentas
mencionadas, de forma a avaliar o processo apresentado.
|
Page generated in 0.3137 seconds