Spelling suggestions: "subject:"observações influent (estatística)"" "subject:"observações influent (statística)""
1 |
Diagnostico de influencia em modelos de volatilidade estocastica / Influence diagnostics in stochastic volatility modelsMartim, Simoni Fernanda 14 August 2018 (has links)
Orientadores: Mauricio Enrique Zevallos Herencia, Luiz Koodi Hotta / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-14T12:07:35Z (GMT). No. of bitstreams: 1
Martim_SimoniFernanda_M.pdf: 2441806 bytes, checksum: 4d34450ac590270c90e7eb66a293b51b (MD5)
Previous issue date: 2009 / Resumo: O diagnóstico de modelos é uma etapa fundamental para avaliar a qualidade do ajuste dos modelos. Nesse sentido, uma das ferramentas de diagnóstico mais importantes é a análise de influência. Peña (2005) introduziu uma forma de analisar a influência em modelos de regressão, a qual avalia como cada ponto é influenciado pelos outros na amostra. Essa estratégia de diagnóstico foi adaptada por Hotta e Motta (2007) na análise de influência dos modelos de volatilidade estocástica univariados. Nesta dissertação, é realizado um estudo de diagnóstico de influência para modelos de volatilidade estocástica univariados assimétricos, assim como para modelos de volatilidade estocástica multivariados. As metodologias propostas são ilustradas através da análise de dados simulados e séries reais de retornos financeiros. / Abstract: Model diagnostics is a key step to assess the quality of fitted models. In this sense, one of the most important tools is the analysis of influence. Peña (2005) introduced a way of assessing influence in linear regression models, which evaluates how each point is influenced by the others in the sample. This diagnostic strategy was adapted by Hotta and Motta (2007) on the influence analysis of univariate stochastic volatility models. In this dissertation, it is performed a study of influence diagnostics of asymmetric univariate stochastic volatility models as well as multivariate stochastic volatility models. The proposed methodologies are illustrated through the analysis of simulated data and financial time series returns. / Mestrado / Series Temporais Financeiras / Mestra em Estatística
|
2 |
Diagnóstico em modelos de regressão linear e não-linear com erros simétricos / Diagnostic in linear and nonlinear regression models with symmetrical errorsReis, Sandra Santos dos, 1983- 24 August 2018 (has links)
Orientador: Mauricio Enrique Zevallos Herencia / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-24T02:03:22Z (GMT). No. of bitstreams: 1
Reis_SandraSantosdos_M.pdf: 1897835 bytes, checksum: 24e50267c694dbcb380ddcfc9d7bdace (MD5)
Previous issue date: 2013 / Resumo: Neste trabalho discutimos a detecção de observações influentes em modelos simétricos lineares e não lineares. Em primeiro lugar é realizado um estudo de simulação para avaliar o desempenho de três métodos de estimação em dados gerados por quatro situações: sem observações influentes, com outliers na variável resposta, com observações influentes de média alavancagem e com observações influentes de alta alavancagem. São analisados dois métodos de máxima verossimilhança e um método robusto. Foram considerados modelos de regressão linear e não linear com erros logísticos tipo II e t-Student. Em segundo lugar é discutida detecção de observações influentes mediante a distância de Cook generalizada, a estatística de Peña e a estatística de Andrews-Pregibon. Em particular é discutida a conveniência de utilizar a metodologia de limiares para caracterizar uma observação como influente ou não influente, assim como o efeito da estimação de parâmetros na construção de limiares. Estas medidas foram aplicadas a conjuntos de dados reais e simulados considerando o ajuste de alguns modelos simétricos com uma adaptação no método de estimação scoring de Fisher / Abstract: We discuss the detection of influential observations in symmetrical linear and nonlinear regression models. First a simulation study is conducted to evaluate the performance of three estimation methods on data generated by four situations: without influential observations with outliers in the response variable, with influential observations average leverage and influential observations with high leverage. Two methods of maximum likelihood and robust method are analyzed. We considered linear and nonlinear regression models with logistic-II and Student-t errors. Secondly detection of influential observations by generalized Cook's distance, the statistic PeÃ?a and Andrews - Pregibon statistic is discussed. In particular the convenience of using the methodology to characterize a threshold observation as influential or not influential, as well as the effect of parameter estimation in the construction of thresholds is discussed. These measures were applied to sets of real and simulated data considering the fit of some symmetrical regression models with an adaptation estimation method of Fisher scoring / Mestrado / Estatistica / Mestra em Estatística
|
Page generated in 0.0765 seconds