• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 68
  • 51
  • 19
  • 9
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 417
  • 145
  • 73
  • 67
  • 63
  • 55
  • 54
  • 51
  • 46
  • 44
  • 42
  • 38
  • 37
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Vehicle Detection and Classification from a LIDAR equipped probe vehicle

Yang, Rong 29 September 2009 (has links)
No description available.
162

CHATTERING REDUCTION AND OPTIMIZATION OF POWER CONVERTERS

Al-Hosani, Khalifa Hasan 28 July 2011 (has links)
No description available.
163

AN INVESTIGATION OF MULTIPLE-DIGIT CUE COMBINATION: PSYCHOPHYSICS AND BAYESIAN MODELING / MULTIPLE-DIGIT CUE COMBINATION

Prodribaba, Nina January 2018 (has links)
In recent years, computational neuroscientists have suggested that human behaviour, including perception, occurs in a manner consistent with Bayesian inference. According to the Bayesian ideal observer model, the observer combines cues from multiple sensory streams as a weighted average based on each cue’s reliability. Most cue-combination research has focused on integration of cues between sensory modalities or within the visual modality. Cue combination within the tactile modality has been relatively rarely studied, and it is still not known whether cues from individual digits combine optimally. In this thesis, we use the ideal observer model to determine whether cues from three different digits are combined optimally. We predicted that cues from multiple digits would be combined according to the optimal cue combination model. To test our hypothesis, we devised a two-interval forced choice (2IFC) task where participants had to discriminate the distal/proximal location of a 1-mm thick edge across the fingerpad(s) of the index (D2), middle (D3), and ring (D4) fingers. We used a Bayesian adaptive method, the ψ method, to compute participants’ psychometric functions for single-digit (D2, D3, and D4) and multiple-digit (D23, D24, D34, and D234) conditions. We determined the stimulus level ∆x, the distance (mm) between the distal and proximal stimuli locations, at 76% correct probability. This distance corresponds to a sensitivity index d'=1 and is the σ value of the participant’s stimulus measurement distribution. We then used the single-digit σ values to predict optimal cue combination for the multiple-digits combinations. We did not observer optimal cue-combination between the digits in this study. We outline potential implications the results of this experimental have on determining how the nervous system combines cues between digits, focusing on theoretical and experimental updates to the experiment that might result in the observation of optimal cue combination between digits. / Thesis / Master of Science (MSc)
164

Comprehensive assessment of patient image quality and radiation dose in latest generation cardiac x-ray equipment for percutaneous coronary interventions

Gislason-Lee, Amber J., Keeble, C., Egleston, D., Bexon, J., Kenyelics, S.M., Davies, A.G. 02 May 2017 (has links)
Yes / This study aimed to determine whether a reduction in radiation dose was found for percutaneous coronary interventional (PCI) patients using a cardiac interventional x-ray system with state-of-the-art image enhancement and x-ray optimization, compared to the current generation x-ray system, and to determine the corresponding impact on clinical image quality. Patient procedure dose area product (DAP) and fluoroscopy duration of 131 PCI patient cases from each x-ray system were compared using a Wilcoxon test on median values. Significant reductions in patient dose (p ≪ 0.001) were found for the new system with no significant change in fluoroscopy duration (p ¼ 0.2); procedure DAP reduced by 64%, fluoroscopy DAP by 51%, and “cine” acquisition DAP by 76%. The image quality of 15 patient angiograms from each x-ray system (30 total) was scored by 75 clinical professionals on a continuous scale for the ability to determine the presence and severity of stenotic lesions; image quality scores were analyzed using a two-sample t -test. Image quality was reduced by 9% (p ≪ 0.01) for the new x-ray system. This demonstrates a substantial reduction in patient dose, from acquisition more than fluoroscopy imaging, with slightly reduced image quality, for the new x-ray system compared to the current generation system. / This research was funded by Philips Healthcare (the Netherlands)
165

Can image enhancement allow radiation dose to be reduced whilst maintaining the perceived diagnostic image quality required for coronary angiography?

Joshi, A., Gislason-Lee, Amber J., Sivananthan, U.M., Davies, A.G. 03 March 2017 (has links)
Yes / Digital image processing used in modern cardiac interventional x-ray systems may have the potential to enhance image quality such that it allows for lower radiation doses. The aim of this research was to quantify the reduction in radiation dose facilitated by image processing alone for percutaneous coronary intervention (PCI) patient angiograms, without reducing the perceived image quality required to confidently make a diagnosis. Incremental amounts of image noise were added to five PCI patient angiograms, simulating the angiogram having been acquired at corresponding lower dose levels (by 10-89% dose reduction). Sixteen observers with relevant and experience scored the image quality of these angiograms in three states - with no image processing and with two different modern image processing algorithms applied; these algorithms are used on state-of-the-art and previous generation cardiac interventional x-ray systems. Ordinal regression allowing for random effects and the delta method were used to quantify the dose reduction allowed for by the processing algorithms, for equivalent image quality scores. The dose reductions [with 95% confidence interval] from the state-of-the-art and previous generation image processing relative to no processing were 24.9% [18.8- 31.0%] and 15.6% [9.4-21.9%] respectively. The dose reduction enabled by the state-of-the-art image processing relative to previous generation processing was 10.3% [4.4-16.2%]. This demonstrates that statistically significant dose reduction can be facilitated with no loss in perceived image quality using modern image enhancement; the most recent processing algorithm was more effective in preserving image quality at lower doses. / The study was funded by Philips Healthcare (the Netherlands).
166

An On-Road Investigation of Commercial Motor Vehicle Operators and Self-Rating of Alertness and Temporal Separation as Indicators of Driver Fatigue

Belz, Steven M. 29 November 2000 (has links)
This on-road field investigation employed, for the first time, a completely automated, trigger-based data collection system capable of evaluating driver performance in an extended duration real-world commercial motor vehicle environment. The complexities associated with the development of the system, both technological and logistical and the necessary modifications to the plan of research are presented herein This study, performed in conjunction with an on-going three year contract with the Federal Highway Administration, examined the use of self-rating of alertness and temporal separation (minimum time-to-collision, minimum headway, and mean headway) as indicators of driver fatigue. Without exception, the regression analyses for both the self-rating of alertness and temporal separation yielded models low in predictive ability; neither metric was found to be a valid indicator of driver fatigue. Various reasons for the failure of self-rating of fatigue as a valid measure are discussed. Dispersion in the data, likely due to extraneous (non-fatigue related) factors (e.g., other drivers) are credited with reducing the sensitivity of the temporal separation indicators. Overall fatigue levels for all temporal separation incidents (those with a time-to-collision equal to or less than four seconds) were found to be significantly higher than for those randomly triggered incidents. On this basis, it is surmised that temporal separation may be a sensitive indicator for time-to-collision values greater than the 4-second criterion employed in this study. Two unexpected relationships in the data are also discussed. A "wall" effect was found to exist for minimum time-to-collision values at 1.9 seconds. That is, none of the participants who participated in this research effort exhibited following behaviors with less than a 1.9-second time-to-collision criterion. In addition, based upon the data collected for this research, anecdotal evidence suggests that commercial motor vehicle operators do not appear to follow the standard progression of events associated with the onset of fatigue. / Ph. D.
167

Nonlinear Control and Robust Observer Design for Marine Vehicles

Kim, Myung-Hyun 05 December 2000 (has links)
A robust nonlinear observer, utilizing the sliding mode concept, is developed for the dynamic positioning of ships. The observer provides the estimates of linear velocities of the ship and bias from the slowly varying environmental loads. It also filters out wave frequency motion to avoid wear of actuators and excessive fuel consumption. Especially, the observer structure with a saturation function makes the proposed observer robust against neglected nonlinearties, disturbances and uncertainties. A direct adaptive neural network controller is developed for a model of an underwater vehicle. Radial basis neural network and multilayer neural network are used in the closed-loop to approximate the nonlinear vehicle dynamics. No prior off-line training phase and no explicit knowledge of the structure of the plant are required, and this scheme exploits the advantages of both neural network control and adaptive control. A control law and a stable on-line adaptive law are derived using the Lyapunov theory, and the convergence of the tracking error to zero and the boundedness of signals are guaranteed. Comparison of the results with different neural network architectures is made, and performance of the controller is demonstrated by computer simulations. The sliding mode observer is used to eliminate observation spillovers in the vibration control of flexible structures. It is common to build a state feedback controller and a state estimator based on the mathematical model of the system with a finite number of vibration modes, but this may cause control and observation spillover due to the residual (uncontrolled) modes. The performance of a sliding mode observer is compared with that of a conventional Kalman filter in order to demonstrate robustness and disturbance decoupling characteristics. Simulation and experimental results using the sliding mode observer are presented for the active vibration control of a cantilever beam using smart materials. / Ph. D.
168

Observateurs dynamiques et commande des systèmes : application aux systèmes de grande dimension / Dynamic observers and control design : application to large-scale systems

Gao, Nan 29 June 2015 (has links)
Cette thèse est le résultat de recherche effectuée à Longwy au sein du département CID « Contrôle Identification et Diagnostic» du Centre de Recherche en Automatique de Nancy (CRAN). Elle concerne, d’une part, la synthèse des observateurs dynamiques (d’ordre plein et d’ordre réduit) et la commande basée observateur d’une classe de systèmes linéaires incertains, d’autre part, l’application de ces résultats aux systèmes de grande dimension. Dans une première partie, une nouvelle forme d’observateurs dynamiques H-infini est conçue pour les systèmes linéaires en présence d’entrées inconnues et de perturbations, pour les systèmes continus et discrets. L’observateur proposé généralise ceux existants tels que les observateurs proportionnels et proportionnels-intégrales. La conception d’observateur est fondée sur la résolution des inégalités matricielles linéaires (LMI). Ensuite, ces observateurs ont été utilisés dans la synthèse de contrôleurs basés observateur pour les systèmes incertains en présence de perturbations. Cette synthèse est basée sur le paramétrage des solutions des contraintes algébriques obtenues à partir des erreurs d’estimation. La solution est obtenue à partir de la résolution des inégalités matricielles bilinéaires en utilisant un algorithme à 2 étapes.Dans la dernière partie, les résultats obtenus ont été étendus aux systèmes de grande dimension. Dans ce cadre, les systèmes considérés sont décomposés en plusieurs sous-systèmes interconnectés de faible dimension, où les interconnections sont supposées non linéaires et satisfaire des contraintes quadratiques. Une commande décentralisée basée observateur dynamique est proposée pour les systèmes interconnectés incertains en présence de perturbations / The present thesis is the result of research conducted in Longwy, within the department Control, Identification, Diagnosis (CID) of Research Center for Automatic Control of Nancy (CRAN). This thesis investigates the problem of dynamic observer (full- and reduced-order) and observer-based control design and their applications to large-scale systems. Firstly, a new form of H-infinity dynamic observer is designed for linear systems in the presence of unknown inputs and disturbances. The proposed observer generalizes the existing results on proportional observer and proportional integral observer. The observer design is based on the solution of linear matrix inequalities (LMI). Both continuous-time and discrete-time systems are considered. Thereafter, by inserting the proposed observer into a closed-loop, an observer-based control is presented for uncertain systems in the presence of disturbances. Based on the parameterization of algebraic constraints obtained from the analysis of the estimation error, the control design is derived from the solution of bilinear matrix inequality, by using a two-steps algorithm. Finally, the obtained results have been extended to large-scale systems. A decentralized observer-based control is proposed for large-scale uncertain systems in the presence of disturbances. These systems are composed of several interconnected subsystems of low dimensions, where the interconnections are assumed to be nonlinear and satisfy quadratic constraints
169

Admittance and impedance haptic control for realization of digital clay as an effective human machine interface (HMI) device

Ngoo, Cheng Shu 17 November 2009 (has links)
Shape plays an important role in our everyday life to interpret information about the surroundings whether we are aware or not. Together with visual and auditory information, we are able to obtain and process information for different purposes. Output devices such as monitors and speakers convey visual and auditory information while input devices such as touch screen and microphones receive that information for human machine interaction. Such devices have become commonplace but there has yet to be a fitting input/output device utilizing our haptic perception. Digital Clay is a next generation Human Machine Interface (HMI) device for 2.5D shape input/output via an array of hydraulic actuators. This device potentially has wide applications in the areas of engineering, sciences, medicine, military, entertainment etc. The user can perceive the shape of a computer programmed model in a tangible and concrete manner which means an added realism with the addition of the sense of touch. Conversely, the user can also use Digital Clay as an input device to the computer, by shaping and molding desired shapes on the device, no longer limited to drawing models with a mouse on CAD software. Shape display has been achieved with the current 5x5 prototype at the Georgia Institute of Technology but this research seeks to expand its capability to include haptic feedback and consequently shaping mode. This thesis gives an overview of the current 5x5 prototype and implements 2 commonly used haptic control methods, the admittance control and the impedance control. For implementing the admittance control, actuator displacement and velocity controllers and a proportional integral observer (PIO) are designed. The model-based unknown input observer is a solution for force estimation without added sensors in the actuators. For implementing the impedance control, a novel pressure control technique is designed to provide pressure feedback to the actuators array along with accurate and reliable displacement measurement. Both of the haptic control methods are evaluated, hardware and software limitations are outlined and possible future improvements are suggested.
170

Optimal observers and optimal control : improving car efficiency with Kalman et Pontryagin

Sebesta, Kenneth 24 June 2010 (has links) (PDF)
The PhD presents a combined approach to improving individual car efficiency. An optimal observer, the Extended Kalman Filter, is used to create an efficiency model for the car. Particular attention was paid to handling the asynchronous and redundant nature of the measurement data. A low-cost sensor suite developed to measure data is described. This sensor suite was installed on multiple vehicles to good success. It employsan accelerometer, gps, fuel injector timer, and Vss input to measure all the data necessary to reconstruct the car's state. This observer and sensor suite can be used as the base for any study which requires car efficiency maps, allowing research to proceed without manufacturer supplied data. Once the efficiency map is found, it is then curve-fitted in order to reduce model complexity. The simplified model is then used as a basis for optimal control through Pontryagin's Maximum Principle. Real-world test results are given, both for efficiency mapping, and for optimal control. Detailed discussion of the observer and controller is presented, in order to ease understanding and save implementation time

Page generated in 0.0329 seconds