Spelling suggestions: "subject:"observer study"" "subject:"observer atudy""
1 |
Comprehensive assessment of patient image quality and radiation dose in latest generation cardiac x-ray equipment for percutaneous coronary interventionsGislason-Lee, Amber J., Keeble, C., Egleston, D., Bexon, J., Kenyelics, S.M., Davies, A.G. 02 May 2017 (has links)
Yes / This study aimed to determine whether a reduction in radiation dose was found for percutaneous
coronary interventional (PCI) patients using a cardiac interventional x-ray system with state-of-the-art image
enhancement and x-ray optimization, compared to the current generation x-ray system, and to determine
the corresponding impact on clinical image quality. Patient procedure dose area product (DAP) and fluoroscopy
duration of 131 PCI patient cases from each x-ray system were compared using a Wilcoxon test on median
values. Significant reductions in patient dose (p ≪ 0.001) were found for the new system with no significant
change in fluoroscopy duration (p ¼ 0.2); procedure DAP reduced by 64%, fluoroscopy DAP by 51%, and
“cine” acquisition DAP by 76%. The image quality of 15 patient angiograms from each x-ray system (30 total)
was scored by 75 clinical professionals on a continuous scale for the ability to determine the presence and
severity of stenotic lesions; image quality scores were analyzed using a two-sample t -test. Image quality
was reduced by 9% (p ≪ 0.01) for the new x-ray system. This demonstrates a substantial reduction in patient
dose, from acquisition more than fluoroscopy imaging, with slightly reduced image quality, for the new x-ray
system compared to the current generation system. / Philips Healthcare (the Netherlands)
|
2 |
Can image enhancement allow radiation dose to be reduced whilst maintaining the perceived diagnostic image quality required for coronary angiography?Joshi, A., Gislason-Lee, Amber J., Sivananthan, U.M., Davies, A.G. 03 March 2017 (has links)
Yes / Digital image processing used in modern cardiac interventional x-ray systems may have the potential to enhance image quality such that it allows for lower radiation doses. The aim of this research was to quantify the reduction in radiation dose facilitated by image processing alone for percutaneous coronary intervention (PCI) patient angiograms, without reducing the perceived image quality required to confidently make a diagnosis. Incremental amounts of image noise were added to five PCI patient angiograms, simulating the angiogram having been acquired at corresponding lower dose levels (by 10-89% dose reduction). Sixteen observers with relevant and experience scored the image quality of these angiograms in three states - with no image processing and with two different modern image processing algorithms applied; these algorithms are used on state-of-the-art and previous generation cardiac interventional x-ray systems. Ordinal regression allowing for random effects and the delta method were used to quantify the dose reduction allowed for by the processing algorithms, for equivalent image quality scores.
The dose reductions [with 95% confidence interval] from the state-of-the-art and previous generation image processing relative to no processing were 24.9% [18.8- 31.0%] and 15.6% [9.4-21.9%] respectively. The dose reduction enabled by the state-of-the-art image processing relative to previous generation processing was 10.3% [4.4-16.2%]. This demonstrates that statistically significant dose reduction can be facilitated with no loss in perceived image quality using modern image enhancement; the most recent processing algorithm was more effective in preserving image quality at lower doses. / Philips Healthcare (the Netherlands).
|
3 |
Optimization of Fast MR Imaging Technologies using the Case-PDM to Quantitatively Assess Image QualityMiao, Jun 08 March 2013 (has links)
No description available.
|
4 |
Low-Dose 3D Quantitative Vascular X-ray Imaging of the Breast / Imagerie Vasculaire du Sein par Rayons X, Tridimensionnelle, Quantitative et Faible DoseMilioni de Carvalho, Pablo 22 September 2014 (has links)
Contexte : Le cancer du sein est le cancer le plus fréquent et le deuxième cancer le plus mortel chez la femme. Les techniques d'imagerie constituent un élément essentiel pour le dépistage, le diagnostic, la stadification et le traitement du cancer du sein. L'imagerie par résonance magnétique avec injection de produit de contraste (CE-MRI) est actuellement la technique d'imagerie standard pour la détection du développement vasculaire anormal et des prises de contraste des lésions mammaires. CE-MRI est cependant très coûteuse et peu disponible. De plus, sa résolution spatiale pourrait être insuffisante pour la détection de certains types de lésions, et ne permet pas d'imager les amas de microcalcifications. Le développement de l'angiomammographie double-énergie (CESM) a permis l'utilisation des produits de contraste intraveineux en clinique avec des appareils conventionnels de mammographie. Cependant, CESM est une technique de projection 2D et présente, par conséquence, des limites pour décrire la structure 3D interne des lésions et pour fournir une information fonctionnelle 3D précise.La tomosynthèse numérique du sein avec injection de produit de contraste (CE-DBT) et le scanner dédié du sein avec injection de produit de contraste (CE-bCT) sont deux techniques d'imagerie actuellement en investigation par des groupes de recherche académiques et industriels. Il est cependant anticipé que le potentiel quantitatif de la CE-DBT soit limité, en raison de la faible résolution en profondeur due à l'ouverture angulaire limitée de la DBT. CE-bCT, avec sa résolution spatiale quasi-isotrope et son intensité de signal proportionnelle au coefficient d'atténuation linéaire, est supposée offrir une information quantitative plus précise, bien qu'une utilisation à faible dose de radiation reste toujours un défi.Objectifs : L'objectif de cette thèse a été d'étudier la faisabilité de la méthode CE-bCT et sa capacité à détecter et localiser des tumeurs vascularisées, ainsi que d'offrir de l'information morphologique et fonctionnelle précise sur les tumeurs. Pour comprendre la valeur ajoutée de la CE-bCT par rapport à CE-DBT, le potentiel quantitatif des deux méthodes a également été comparé. Nos études ont été réalisées grâce à des simulations par ordinateur, validées par des mesures expérimentales.Méthodes : Dans un premier temps, une plateforme de simulation capable de modéliser différentes techniques d'imagerie du sein par rayons X, et fournissant des images radiographiques de fantômes numériques simples et complexes, a été implémentée et validée. Deuxièmement, une étude d'optimisation pour la technique CE-bCT basée sur une approche double-énergie a été réalisée, dans le but de maximiser la qualité des images équivalentes-iode ainsi que des images morphologiques. Enfin, le potentiel quantitatif des méthodes CE-bCT et CE-DBT a été comparé au travers de l'évaluation de la détectabilité, de la caractérisation, de la localisation et de la mesure de l'étendue 3D des lésions iodées. Dans une étude impliquant des observateurs humains, la détectabilité et la caractérisation des lésions iodées de différentes tailles, formes et concentrations ont été comparées entre CE-bCT et CE-DBT, grâce à l'utilisation d'un fantôme anthropomorphique numérique du sein.Conclusions : Les études de simulation menées pendant cette thèse suggèrent que le scanner dédié du sein avec injection de produit de contraste iodé pourrait être une technique réalisable pour la détection, localisation et caractérisation des tumeurs du sein, pour un niveau de dose comparable à une mammographie standard. Bien que les comparaisons préliminaires avec CE-DBT suggèrent une performance comparable sur la détection et caractérisation, l'information 3D complète combinée avec une haute résolution spatiale font de CE-bCT une évolution intéressante de CESM vers une évaluation quantitative 3D des prises de contraste, et une alternative potentielle à CE-MRI pour certaines indications cliniques. / Background: Worldwide, breast cancer is the most common cancer and second deadliest cancer in women. Diagnostic imaging techniques are a critical part for screening, diagnosis, tumor staging and cancer therapy of the breast. Contrast-Enhanced Magnetic Resonance Imaging (CE-MRI) is the current standard imaging technique allowing detection of abnormal vascular development and lesion contrast uptake. CE-MRI is however very costly and not widely available. Moreover, its spatial resolution might not be sufficient to depict certain types of lesions including microcalcifications. The development of Contrast-Enhanced Spectral Mammography (CESM) has made the clinical use of intravenous contrast enhancement with conventional mammography possible. However, CESM is a 2D projection technique and therefore presents limitations to depict the 3D internal structures of lesions and to provide accurate quantitative 3D functional information.Contrast-Enhanced Digital Breast Tomosynthesis (CE-DBT) and dedicated Contrast-Enhanced Breast CT (CE-bCT) are two breast imaging modalities currently under investigation by academic and industrial research groups. It is however anticipated that the quantitative potential of CE-DBT is limited, due to the inherent low depth-resolution of limited opening angle DBT modality. CE-bCT with quasi-isotropic spatial resolution and voxel signal intensity proportional to the linear attenuation coefficient is believed to offer more accurate quantitative information, though a low-dose operation is still a challenge.Objectives: The purpose of this thesis has been to study the technical feasibility of CE-bCT and its potential to accurately depict and localize tumors, as well as to provide accurate quantitative morphological and functional imaging information about tumors, at low radiation dose levels. To understand the incremental value of CE-bCT over CE-DBT, the quantitative potential of both technologies have been compared. This investigation has been performed through computer simulations.Methods: At first, a simulation platform capable of modeling various X-ray breast imaging techniques and providing radiographic images of simple and complex computational phantoms was developed and validated. Secondly, an optimization study of a CE-bCT technique based on a dual-energy approach was performed, aiming to maximize image quality of iodine-enhanced and morphological images. Finally, the quantitative potential of CE-bCT and CE-DBT was compared through the assessment of iodine-enhanced lesion detectability, characterization, localization and 3D extent measurement. In a human observer study, depiction and characterization of iodine-enhanced lesions of different sizes, shapes and iodine uptakes was compared between CE-bCT and CE-DBT using a mesh-based anthropomorphic breast phantom.Conclusions: The simulation studies in this PhD thesis suggest that dual-energy iodine-injected CE-bCT could be a feasible technique for breast tumor depiction, localization and characterization, with dose levels comparable to standard mammography. While preliminary comparisons with CE-DBT suggests comparable depiction and characterization performance, the fully 3D information combined with high spatial resolution confirms CE-bCT as an interesting low-dose evolution of CESM toward 3D quantitative assessment of contrast uptakes and potential alternative to
|
Page generated in 0.0585 seconds