• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • Tagged with
  • 13
  • 13
  • 13
  • 7
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A obstrução de Euler de uma função / The Euler obstruction of a function

Henrique, Daiane Alice 25 January 2013 (has links)
Nosso objetivo neste trabalho é estudar a obstrução de Euler de uma função, este conceito foi definido por J.-P. Brasselet, D. Massey, A. J. Parameswaran e J. Seade, e generaliza dois conceitos importantes, a obstrução de Euler definida por R. D. MacPherson assim como o número de Milnor de uma função. O resultado principal deste trabalho mostra a relação existente entre a obstrução de Euler e a obstrução de Euler de uma função / Our goal in this work is to study the Euler obstruction of a function, this concept was defined by J.-P. Brasselet, D. Massey, A. J. Parameswaran and J. Seade, and it generalizes two important concepts, the Euler obstruction defined by R. D. MacPherson and the Milnor number of a function. The main result of this study shows the relation between the Euler obstruction and the Euler obstruction of a function
2

A obstrução de Euler de uma função / The Euler obstruction of a function

Daiane Alice Henrique 25 January 2013 (has links)
Nosso objetivo neste trabalho é estudar a obstrução de Euler de uma função, este conceito foi definido por J.-P. Brasselet, D. Massey, A. J. Parameswaran e J. Seade, e generaliza dois conceitos importantes, a obstrução de Euler definida por R. D. MacPherson assim como o número de Milnor de uma função. O resultado principal deste trabalho mostra a relação existente entre a obstrução de Euler e a obstrução de Euler de uma função / Our goal in this work is to study the Euler obstruction of a function, this concept was defined by J.-P. Brasselet, D. Massey, A. J. Parameswaran and J. Seade, and it generalizes two important concepts, the Euler obstruction defined by R. D. MacPherson and the Milnor number of a function. The main result of this study shows the relation between the Euler obstruction and the Euler obstruction of a function
3

Obstrução de Euler de aplicações analíticas / Euler obstruction of analytic maps

Grulha Júnior, Nivaldo de Góes 28 November 2007 (has links)
Neste trabalho determinamos relações entre a obstrução de Euler de uma função analítica com singularidade isolada f e o número de Milnor de f definido por Bruce e Roberts para funções definidas em espaços singulares. Apresentamos também uma generalização da obstrução de Euler de uma função analítica com singularidade isolada para o caso de uma aplicação \'f : (V, 0) seta (\'C POT. k\', 0) onde (V, 0) é o germe de uma variedade analítica complexa, equidimensional de dimensão \' n > OU = k\' , e uma fórmula para calcular a obstrução de Euler de k-referenciais, em termos da obstrução de Euler de f / In this work we determine relations between the local Euler obstruction of an analytic function singular at the origin to the case of a analytic map \'f : (V, 0) seta (\'C POT. k, 0\'), where (V, 0) is the germ of a complex analytic variety, equidimensional of dimension \' n > OU = k\', and a formula which computes the local Euler obstruction, defined for k-frames, in the local Euler obstruction of f
4

Números de Milnor e obstrução de Euler / Milnor numbers and Euler obstruction

Menegon Neto, Aurelio 27 June 2007 (has links)
Neste trabalho, definimos a obstrução local de Euler de um espaço analítico complexo singular (X, \'x IND.0\'), denotada por Eu(X, \'x IND.0\'), e a obstrução local de Euler de uma função holomorfa f definida neste espaço, com uma singularidade isolada em \'x IND. 0\', denotada por \'Eu IND. f\' (X, \'x IND.0\'); e apresentamos duas fórmulas para seus respectivos cálculos. Em seguida, através de uma abordagem geométrica, determinamos as relações entre \'Eu IND. f\' (X,\'x IND.0\') e algumas generalizações do número de Milnor para funções em espaços singulares / In this work we define the local Euler obstruction of a complex analytic singularity (X, \'x IND.0\'), denoted Eu(X, \'x IND.0\'), and the local Euler obstruction of a holomorphic function f defined on this space, with an isolated singularity at \'x IND. 0\', denoted \'Eu IND. f\' (X, \'x IND.0\'); and we present two formulas for their respective calculations. Next, using a geometric approach, we determine the relations between \'Eu IND.f\' (X, \'x IND.0\') and several generalizations of the Milnor number for functions on singular spaces
5

Números de Milnor e obstrução de Euler / Milnor numbers and Euler obstruction

Aurelio Menegon Neto 27 June 2007 (has links)
Neste trabalho, definimos a obstrução local de Euler de um espaço analítico complexo singular (X, \'x IND.0\'), denotada por Eu(X, \'x IND.0\'), e a obstrução local de Euler de uma função holomorfa f definida neste espaço, com uma singularidade isolada em \'x IND. 0\', denotada por \'Eu IND. f\' (X, \'x IND.0\'); e apresentamos duas fórmulas para seus respectivos cálculos. Em seguida, através de uma abordagem geométrica, determinamos as relações entre \'Eu IND. f\' (X,\'x IND.0\') e algumas generalizações do número de Milnor para funções em espaços singulares / In this work we define the local Euler obstruction of a complex analytic singularity (X, \'x IND.0\'), denoted Eu(X, \'x IND.0\'), and the local Euler obstruction of a holomorphic function f defined on this space, with an isolated singularity at \'x IND. 0\', denoted \'Eu IND. f\' (X, \'x IND.0\'); and we present two formulas for their respective calculations. Next, using a geometric approach, we determine the relations between \'Eu IND.f\' (X, \'x IND.0\') and several generalizations of the Milnor number for functions on singular spaces
6

Obstrução de Euler de aplicações analíticas / Euler obstruction of analytic maps

Nivaldo de Góes Grulha Júnior 28 November 2007 (has links)
Neste trabalho determinamos relações entre a obstrução de Euler de uma função analítica com singularidade isolada f e o número de Milnor de f definido por Bruce e Roberts para funções definidas em espaços singulares. Apresentamos também uma generalização da obstrução de Euler de uma função analítica com singularidade isolada para o caso de uma aplicação \'f : (V, 0) seta (\'C POT. k\', 0) onde (V, 0) é o germe de uma variedade analítica complexa, equidimensional de dimensão \' n > OU = k\' , e uma fórmula para calcular a obstrução de Euler de k-referenciais, em termos da obstrução de Euler de f / In this work we determine relations between the local Euler obstruction of an analytic function singular at the origin to the case of a analytic map \'f : (V, 0) seta (\'C POT. k, 0\'), where (V, 0) is the germ of a complex analytic variety, equidimensional of dimension \' n > OU = k\', and a formula which computes the local Euler obstruction, defined for k-frames, in the local Euler obstruction of f
7

Superfícies multitóricas, obstrução de Euler e aplicações / Multitoric surfaces, Euler obstruction and applications

Dalbelo, Thaís Maria 24 October 2014 (has links)
Neste trabalho estudamos superfícies com a propriedade que suas componentes irredutíveis são superfícies tóricas. Em particular, apresentamos uma fórmula para calcular a obstrução de Euler local destas superfícies. Como uma aplicação desta fórmula, calculamos a obstrução de Euler local para algumas famílias de superfícies determinantais. Além disso, definimos a característica de Euler evanescente de uma superfície tórica normal Xσ, damos uma fórmula para calcular tal invariante e relacionamos este número com a segunda multiplicidade polar de Xσ. Apresentamos também, uma fórmula para a obstrução de Euler de uma função f : Xσ → C e para o número de Brasselet de tal função. Como uma aplicação deste resultado, calculamos a obstrução de Euler de um tipo de polinômio definido em uma família de superfícies determinantais. / In this work we study surfaces with the property that their irreducible components are toric surfaces. In particular, we present a formula to compute the local Euler obstruction of such surfaces. As an application of this formula we compute the local Euler obstruction for some families of determinantal surfaces. Furthermore, we define the vanishing Euler characteristic of a normal toric surface Xσ, we give a formula to compute it, and we relate this number with the second polar multiplicity of Xσ. We also present a formula for the Euler obstruction of a function f : Xσ → C and for the Brasselet number of it. As an application of this result we compute the Euler obstruction of a type of polynomial on a family of determinantal surfaces.
8

Superfícies multitóricas, obstrução de Euler e aplicações / Multitoric surfaces, Euler obstruction and applications

Thaís Maria Dalbelo 24 October 2014 (has links)
Neste trabalho estudamos superfícies com a propriedade que suas componentes irredutíveis são superfícies tóricas. Em particular, apresentamos uma fórmula para calcular a obstrução de Euler local destas superfícies. Como uma aplicação desta fórmula, calculamos a obstrução de Euler local para algumas famílias de superfícies determinantais. Além disso, definimos a característica de Euler evanescente de uma superfície tórica normal Xσ, damos uma fórmula para calcular tal invariante e relacionamos este número com a segunda multiplicidade polar de Xσ. Apresentamos também, uma fórmula para a obstrução de Euler de uma função f : Xσ → C e para o número de Brasselet de tal função. Como uma aplicação deste resultado, calculamos a obstrução de Euler de um tipo de polinômio definido em uma família de superfícies determinantais. / In this work we study surfaces with the property that their irreducible components are toric surfaces. In particular, we present a formula to compute the local Euler obstruction of such surfaces. As an application of this formula we compute the local Euler obstruction for some families of determinantal surfaces. Furthermore, we define the vanishing Euler characteristic of a normal toric surface Xσ, we give a formula to compute it, and we relate this number with the second polar multiplicity of Xσ. We also present a formula for the Euler obstruction of a function f : Xσ → C and for the Brasselet number of it. As an application of this result we compute the Euler obstruction of a type of polynomial on a family of determinantal surfaces.
9

Invariantes de variedades determinantais / Invariants of determinantal varieties

Siesquén, Nancy Carolina Chachapoyas 24 October 2014 (has links)
Neste trabalho estudamos variedades determinantais essencialmente isoladas (EIDS), definidas por W. Èbeling e S. M. Gusen-Zade em [23]. Este tipo de singularidades é uma generalização das singularidades isoladas. A variedade determinantal genérica Mtm, n é o subconjunto das matrizes m X n, tais que o posto seja menor que t, onde t &le; min{n;m}. Uma variedade X &sub; CN é determinantal se é definida como a pré-imagem de uma função holomorfa F : CN &rarr; Mm;n, sobre a variedade determinantal genérica M t</sup m;n, com a condição codim X = codim Mtm;n. Uma variedade determinantal tem singularidade isolada se N &le; (n- t + 2)(m- t + 2) e admite suavização se N < (n-t+2)(m-t+2). Trabalhos recentes têm estudado variedades determinantais com singularidade isolada, [35, 31]. O número de Milnor de uma superfície determinantal é investigado em [35, 31, 12]. Para variedades determinantais de dimensões maiores a característica de Euler evanescente é definida em [31, 12]. Neste trabalho estudamos o conjunto de limites de hiperplanos tangentes às variedades determinantais X2 &sub; C4 e X3 &sub; C5 para dar uma caracterização deste conjunto, em que o número de Milnor de sua seção com a superfície no primeiro caso ou a 3- variedade no segundo caso não é mínimo. O primeiro caso foi estudado por Jawad Snoussi em [38]. Provamos também que se X é uma EIDS de dimensão d e H e H\' são dois hiperplanos fortemente gerais, se P &sub; H e P\' &sub;H\' são planos lineares de codimensão d - 2 contidos respectivamente em H e H\', o número de Milnor das superfícies correspondentes X &cap; P\' são iguais. Este resultado foi provado para o caso em que a seção genérica é uma curva em [26]. Estudamos a transformada de Nash de uma EIDS e discutimos condições suficientes para que esta transformada seja suave. Outro objetivo é estudar a obstrução de Euler de singularidades determinantais essencialmente isoladas. Obtemos fórmulas que relacionam a obstrução de Euler com a característica de Euler evanescente da suavização essencial de suas seções gerais. Estudamos as variedades determinantais com o conjunto singular de dimensão 1 para ilustrar os resultados. / In this work, we study the essentially isolated determinantal singularities (EIDS), which have been defined by W. Èbeling and S. M. Gusen-Zade in the article [23]. This type of singularities is a natural generalization of isolated ones. A generic determinantal variety Mtm;n is a subset of the space of m X n matrices, given by matrices of rank less than t, where t &le; min. A variety X &sub; CN is determinantal if X is defined as the pre-image of Mtm;n by a holomorphic function F : CN &rarr; Mm;n with the condition codim X = codim Mtm;n. Determinantal varieties have isolated singularity if N &le; (n - t + 2)(m - t + 2) and they admit smoothing if N < (n - t +2)(m - t +2). Several recent works investigate determinantal variety with isolated singularities. The Milnor number of a surface was defined in [35, 31] and the vanishing Euler characteristic was studied in [31]. In this work we study the set of limits of tangent hyperplanes to determinantal varieties X2 &sub; C4 and X3 &sub; C5 to give a characterization of this set by the fact that the Milnor number of its section with the surface in the first case or the 3-dimensional determinantal variety in the second case is not minimum. The first case is studied by Jawad Snoussi in [38]. We also prove that if X is a d- dimensional EIDS and H and H\' are strongly general hyperplans, if P &sub; H and P\' are linear plans of codimension d - 2 contained in H and H\', the Milnor number of the surfaces X &cap; P and X &cap; P\' are equal. In the case that the generic section is a curve the result has been proved in [26]. We study the Nash transformation of an EIDS and give sufficient conditions for this transformation to be smooth. Another aim of our study is the Euler obstruction of essentially isolated determinantal singularities. We obtain inductive formulas associating the Euler obstruction with the vanishing Euler characteristic of the essencial smoothing of their generic sections. We study the determinantal variety with singular set of dimension 1 to illustrate the results.
10

Fórmulas de Poincaré-Hopf e classes características de variedades singulares / Poincaré-Hopf´s formulas and characteristic classes of singular manifolds

Zugliani, Giuliano Angelo 08 February 2008 (has links)
Neste trabalho, estudamos diferentes construções e propriedades das classes características de variedades suaves e singulares. Para ilustrar a teoria, calculamos a obstrução de Euler de algumas superfícies singulares no espaço tridimensional e apresentamos uma fórmula do tipo Poincaré-Hopf para variedades singulares / In this work, we study different constructions and properties of the characteristics classes of smooth and singular manifolds. To ilustrate the theory, we compute the Euler obstructions of some singular surfaces in tridimensional space and state a Poincaré-Hopf´s formula for singular varieties

Page generated in 0.0535 seconds