• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the distribution of the time to ruin and related topics

Shi, Tianxiang 19 June 2013 (has links)
Following the introduction of the discounted penalty function by Gerber and Shiu (1998), significant progress has been made on the analysis of various ruin-related quantities in risk theory. As we know, the discounted penalty function not only provides a systematic platform to jointly analyze various quantities of interest, but also offers the convenience to extract key pieces of information from a risk management perspective. For example, by eliminating the penalty function, the Gerber-Shiu function becomes the Laplace-Stieltjes transform of the time to ruin, inversion of which results in a series expansion for the associated density of the time to ruin (see, e.g., Dickson and Willmot (2005)). In this thesis, we propose to analyze the long-standing finite-time ruin problem by incorporating the number of claims until ruin into the Gerber-Shiu analysis. As will be seen in Chapter 2, many nice analytic properties of the original Gerber-Shiu function are preserved by this generalized analytic tool. For instance, the Gerber-Shiu function still satisfies a defective renewal equation and can be generally expressed in terms of some roots of Lundberg's generalized equation in the Sparre Andersen risk model. In this thesis, we propose not only to unify previous methodologies on the study of the density of the time to ruin through the use of Lagrange's expansion theorem, but also to provide insight into the nature of the series expansion by identifying the probabilistic contribution of each term in the expansion through analysis involving the distribution of the number of claims until ruin. In Chapter 3, we study the joint generalized density of the time to ruin and the number of claims until ruin in the classical compound Poisson risk model. We also utilize an alternative approach to obtain the density of the time to ruin based on the Lagrange inversion technique introduced by Dickson and Willmot (2005). In Chapter 4, relying on the Lagrange expansion theorem for analytic inversion, the joint density of the time to ruin, the surplus immediately before ruin and the number of claims until ruin is examined in the Sparre Andersen risk model with exponential claim sizes and arbitrary interclaim times. To our knowledge, existing results on the finite-time ruin problem in the Sparre Andersen risk model typically involve an exponential assumption on either the interclaim times or the claim sizes (see, e.g., Borovkov and Dickson (2008)). Among the few exceptions, we mention Dickson and Li (2010, 2012) who analyzed the density of the time to ruin for Erlang-n interclaim times. In Chapter 5, we propose a significant breakthrough by utilizing the multivariate version of Lagrange's expansion theorem to obtain a series expansion for the density of the time to ruin under a more general distribution assumption, namely when interclaim times are distributed as a combination of n exponentials. It is worth emphasizing that this technique can also be applied to other areas of applied probability. For instance, the proposed methodology can be used to obtain the distribution of some first passage times for particular stochastic processes. As an illustration, the duration of a busy period in a queueing risk model will be examined. Interestingly, the proposed technique can also be used to analyze some first passage times for the compound Poisson processes with diffusion. In Chapter 6, we propose an extension to Kendall's identity (see, e.g., Kendall (1957)) by further examining the distribution of the number of jumps before the first passage time. We show that the main result is particularly relevant to enhance our understanding of some problems of interest, such as the finite-time ruin probability of a dual compound Poisson risk model with diffusion and pricing barrier options issued on an insurer's stock price. Another closely related quantity of interest is the so-called occupation times of the surplus process below zero (also referred to as the duration of negative surplus, see, e.g., Egidio dos Reis (1993)) or in a certain interval (see, e.g., Kolkovska et al. (2005)). Occupation times have been widely used as a contingent characteristic to develop advanced derivatives in financial mathematics. In risk theory, it can be used as an important risk management tool to examine the overall health of an insurer's business. The main subject matter of Chapter 7 is to extend the analysis of occupation times to a class of renewal risk processes. We provide explicit expressions for the duration of negative surplus and the double-barrier occupation time in terms of their Laplace-Stieltjes transform. In the process, we revisit occupation times in the content of the classical compound Poisson risk model and examine some results proposed by Kolkovska et al. (2005). Finally, some concluding remarks and discussion of future research are made in Chapter 8.
2

On the distribution of the time to ruin and related topics

Shi, Tianxiang 19 June 2013 (has links)
Following the introduction of the discounted penalty function by Gerber and Shiu (1998), significant progress has been made on the analysis of various ruin-related quantities in risk theory. As we know, the discounted penalty function not only provides a systematic platform to jointly analyze various quantities of interest, but also offers the convenience to extract key pieces of information from a risk management perspective. For example, by eliminating the penalty function, the Gerber-Shiu function becomes the Laplace-Stieltjes transform of the time to ruin, inversion of which results in a series expansion for the associated density of the time to ruin (see, e.g., Dickson and Willmot (2005)). In this thesis, we propose to analyze the long-standing finite-time ruin problem by incorporating the number of claims until ruin into the Gerber-Shiu analysis. As will be seen in Chapter 2, many nice analytic properties of the original Gerber-Shiu function are preserved by this generalized analytic tool. For instance, the Gerber-Shiu function still satisfies a defective renewal equation and can be generally expressed in terms of some roots of Lundberg's generalized equation in the Sparre Andersen risk model. In this thesis, we propose not only to unify previous methodologies on the study of the density of the time to ruin through the use of Lagrange's expansion theorem, but also to provide insight into the nature of the series expansion by identifying the probabilistic contribution of each term in the expansion through analysis involving the distribution of the number of claims until ruin. In Chapter 3, we study the joint generalized density of the time to ruin and the number of claims until ruin in the classical compound Poisson risk model. We also utilize an alternative approach to obtain the density of the time to ruin based on the Lagrange inversion technique introduced by Dickson and Willmot (2005). In Chapter 4, relying on the Lagrange expansion theorem for analytic inversion, the joint density of the time to ruin, the surplus immediately before ruin and the number of claims until ruin is examined in the Sparre Andersen risk model with exponential claim sizes and arbitrary interclaim times. To our knowledge, existing results on the finite-time ruin problem in the Sparre Andersen risk model typically involve an exponential assumption on either the interclaim times or the claim sizes (see, e.g., Borovkov and Dickson (2008)). Among the few exceptions, we mention Dickson and Li (2010, 2012) who analyzed the density of the time to ruin for Erlang-n interclaim times. In Chapter 5, we propose a significant breakthrough by utilizing the multivariate version of Lagrange's expansion theorem to obtain a series expansion for the density of the time to ruin under a more general distribution assumption, namely when interclaim times are distributed as a combination of n exponentials. It is worth emphasizing that this technique can also be applied to other areas of applied probability. For instance, the proposed methodology can be used to obtain the distribution of some first passage times for particular stochastic processes. As an illustration, the duration of a busy period in a queueing risk model will be examined. Interestingly, the proposed technique can also be used to analyze some first passage times for the compound Poisson processes with diffusion. In Chapter 6, we propose an extension to Kendall's identity (see, e.g., Kendall (1957)) by further examining the distribution of the number of jumps before the first passage time. We show that the main result is particularly relevant to enhance our understanding of some problems of interest, such as the finite-time ruin probability of a dual compound Poisson risk model with diffusion and pricing barrier options issued on an insurer's stock price. Another closely related quantity of interest is the so-called occupation times of the surplus process below zero (also referred to as the duration of negative surplus, see, e.g., Egidio dos Reis (1993)) or in a certain interval (see, e.g., Kolkovska et al. (2005)). Occupation times have been widely used as a contingent characteristic to develop advanced derivatives in financial mathematics. In risk theory, it can be used as an important risk management tool to examine the overall health of an insurer's business. The main subject matter of Chapter 7 is to extend the analysis of occupation times to a class of renewal risk processes. We provide explicit expressions for the duration of negative surplus and the double-barrier occupation time in terms of their Laplace-Stieltjes transform. In the process, we revisit occupation times in the content of the classical compound Poisson risk model and examine some results proposed by Kolkovska et al. (2005). Finally, some concluding remarks and discussion of future research are made in Chapter 8.
3

Optimality of the Financial Decision and the Theory of American and Exotic Options / Optimalité de la décision financière et théorie des options américaines et exotiques

Laminou Abdou, Souleymane 02 November 2016 (has links)
Cette thèse examine les décisions financières à travers la théorie des options Américaines et Exotiques. Dans un premier temps, nous avons présenté une revue de la littérature sur les options de type Américain. La tarification de l’option Américaine standard d’achat est revisitée en vue de fournir les pré-requis. Dans l’étape suivante, un nouveau type de contrat d’option, appelé Strangle Euro-American ou Strangle Hybride, a été introduit. Des formules analytiques ont été fournies pour leurs prix ainsi que leurs paramètres de gestion. Une nouvelle méthode est proposée pour calculer les intégrales qui définissent les bornes d’exercice anticipé. Il a été démontré que cette méthode est efficiente, précise et rapide pour la tarification de tous les types de Strangle voir au delà. Puis, nous avons examiné les options Step de type Américain. Nous avons démontré que les propriétés des options d’achat "vanille" ne s’appliquent pas aux Step dans certaines situations. Les formules d’évaluation et des paramètres de gestion ont été déterminés. Et enfin, nous avons considéré l’évaluation d’une firme détenant simultanément une option d’abandon et une option d’expansion de ses activités selon des conditions du marché (favorables ou défavorables). Les seuils critiques de décision ont été obtenus. Des formules analytiques pour la valeur de la firme ont été obtenues. Des simulations illustrent le comportement de ces seuils critiques de décisions anticipées. / This thesis investigates the financial decisions through the theory of American and Exotic options. First, the literature on American-style derivatives is surveyed. The pricing of standard American call option in the early exercise premium representation is addressed in order to provide prerequisites for what follows. Second, a new variant of Strangle contracts, called Euro-American or Hybrid Strangles, is introduced and priced. Analytical formulas are provided for the prices of all these option contracts as well as their hedging parameters. A new quadrature is proposed to account for the systems of coupled integral equations that locate the early exercise boundaries. It is shown to be efficient, accurate, and fast for pricing all types of early exercisable strangles and more. Third, we examines the valuation of American Step options contract. The structures of the immediate exercise regions of the various contracts are identified. Typical properties of American vanilla calls are shown to fail in some cases. Formulas for prices and hedging parameters, for the American Step options, are derived. Finally, we consider the valuation of a firm holding simultaneously an option to expand and to abandon productions depending on the state of the market (good or bad) in a real option framework. Optimal decision levels are obtained. Analytical formulas for the firm’s value are provided. Numerical results document the behavior of the firm’s value and optimal exercise boundaries levels.

Page generated in 0.0981 seconds