Spelling suggestions: "subject:"ocean engineering"" "subject:"ocean ingineering""
251 |
Design and performance evaluation of a biomimetic flapping foil / Biomimetic flapping foilMartin, Craig Brian, 1977- January 2001 (has links)
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2001. / Includes bibliographical references (p. 79-80). / by Craig Brian Martin. / S.M.
|
252 |
Theoretical and experimental procedures for the prediction of the dynamic behavior of marine risersPatrikalakis, N. M. (Nicholas M.) January 1983 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1983. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING / Bibliography: leaves 259-264. / by Nicholas Marinos Patrikalakis. / Ph.D.
|
253 |
A Rankine panel method as a tool for the hydrodynamic design of complex marine vehiclesMantzaris, Demetrios Alexis, 1968- January 1998 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1998. / Includes bibliographical references (p. 125-130). / by Demetrios Alexis Mantzaris. / Ph.D.
|
254 |
The first- and second-order transient free-surface wave radiation problemsKorsmeyer, F. Thomas January 1988 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1988. / Bibliography: leaves 113-114. / by F. Thomas Korsmeyer. / Ph.D.
|
255 |
Sound wave scattering by cyclindrical shells with internal structuresPark, Sewon January 1995 (has links)
Thesis (Ocean. E.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1995. / Includes bibliographical references (leaves 52-58). / by Sewon Park. / Ocean.E.
|
256 |
Prevention of oil spills by tankers : feasibility study of a safety and environmental index (SEI)Rivollier, Laurent January 1995 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1995. / Includes bibliographical references (leaves 70-71). / by Laurent Rivollier. / M.S.
|
257 |
A study of tidal flushing for use in nitrogen sensitivity index in MassachusettsMahalingappa, Jennifer January 1996 (has links)
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1996. / Includes bibliographical references (p. 69-70). / by Jennifer Mahalingappa. / M.Eng.
|
258 |
High velocity impact fractureTeng, Xiaoqing January 2005 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2005. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Includes bibliographical references (p. 315-330). / An in-depth understanding of dynamic ductile fracture is one of the most important steps to improve the survivability of critical structures such as the lost Twin Towers. In the present thesis, the macroscopic fracture modes and the fracture mechanisms of ductile structural components under high velocity impact are investigated numerically and theoretically. Attention is focused on the formation and propagation of through-thickness cracks, which is difficult to experimentally track down using currently available instruments. Studied are three typical and challenging types of impact problems: (i) rigid mass-to beam impact, (ii) the Taylor test, and (iii) dynamic compression tests on an axisymmetric hat specimen. Using an existing finite element code (ABAQUS/Explicit) implemented with the newly developed Bao-Wierzbicki's (BW) fracture criterion, a number of distinct failure modes including fragmentation, shear plugging, tensile tearing in rigid mass-to-beam impact, confined fracture, petalling, and shear cracking in the Taylor test, are successfully recreated for the first time in the open literature. All of the present predictions are in qualitative agreement with experimental observations. / (cont.) This investigation convincingly demonstrates the applicability of the BW's fracture criterion to high velocity impact problems and at the same time provides an insight into deficiencies of existing fracture loci. Besides void growth, the adiabatic shear banding is another basic failure mechanism often encountered in high velocity impact. This failure mechanism and subsequent fracture is studied through numerical simulation of a recently conducted compression test on a hat specimen. The periodical occurrence of hot spots in the propagating adiabatic shear bands is successfully captured. The relation between hot spots and crack formation is revealed. The numerical predictions correlate well with experimental results. An explicit expression controlling through-thickness crack growth is proposed and verified by performing an extensive parametric study in a wide range of input variables. Using this expression, a two-stage analytical model is formulated for shear plugging of a beam/plate impacted by a flat-nosed projectile. Obtained theoretical solutions are compared with experimental results published in the literature showing very good agreement. / (cont.) Three theoretical models for rigid mass-to-beam impact, the single, double, and multiple impact of beam-to-beam are derived from the momentum conservation principle. The obtained closed-form solutions, which are applicable to the axial stretching dominated case, are validated by finite element analysis. / by Xiaoqing Teng. / Ph.D.
|
259 |
Optimal chartering and investment policies for bulk shippingGonçalves, Franklin de Oliveira January 1992 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1992. / Includes bibliographical references (leaves 152-157). / by Franklin de Oliveira Gonçalves. / Ph.D.
|
260 |
Non-linear dynamics of mooring linesTcheou, Genevieve January 1997 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1997. / Includes bibliographical references (p. 89). / by Genevieve Tcheou. / M.S.
|
Page generated in 0.1238 seconds