Spelling suggestions: "subject:"oceanic lithosphere"" "subject:"oceanica lithosphere""
1 |
Seismic slip of oceanic strike-slip earthquakesAderhold, Kasey 08 April 2016 (has links)
Oceanic strike-slip earthquakes occur on transform faults and fracture zones that cut across thousands of kilometers of seafloor. The largest of these events often rupture a considerable portion of their associated fault and can provide a comprehensive look at seismic slip across the entire fault plane as well as constraints on the depth extent of seismic slip. It is generally accepted that seismic and aseismic slip along oceanic transform faults is thermally controlled, however composition and geometry have been proposed as significant controls on some faults. High strain rates are a mechanism to achieve greater rupture depths, such as the unusually deep centroids reported for the largest strike-slip earthquake recorded to date, the 2012 MW 8.6 Indian Ocean earthquake. Detailed studies of notable earthquakes and a scattering of well-known faults have been of great use in elucidating oceanic strike-slip rupture. Determining if observed behavior is characteristic of all oceanic strike-slip faults requires a different approach.
To resolve how seismic and aseismic slip are controlled with depth and along strike, well-constrained depths of many earthquakes along oceanic strike-slip faults are determined by modeling teleseismic body waves. Finite-fault slip inversions are calculated for the largest, most recent, and best-recorded oceanic strike-slip events. The constrained depth and along-strike location of slip for numerous oceanic earthquakes on strike-slip faults illuminates the distribution of seismic rupture on these faults in detail, as well as in unprecedented breadth through the examination of oceanic faults in a range of spreading rates and lithosphere ages. These well-constrained depths are within the expected limit to brittle failure (600-800ºC) and show that seismic rupture extends throughout the upper mantle to the crust. Observations of seismic rupture along an oceanic strike-slip fault also provide a comparison to the behavior of continental strike-slip faults that pose a far greater hazard to population centers, such as the San Andreas Fault in the Western United States and the North Anatolian Fault in Turkey.
|
2 |
Timescales of Oceanic Lithosphere Hydration: Constraints from Rodingites, Apennines, ItalyLorthioir, Charlotte January 2023 (has links)
Thesis advisor: Ethan Baxter / Serpentinites assume a critical role in geochemical and geophysical cycles, from recycling fluid into the sub-arc mantle to facilitating exhumation within subduction zones. Rodingite dikes can be used as a lens to investigate the hydration of the oceanic lithosphere as their development is synchronous with serpentinization, and while serpentinites lack sufficient mineral phases for geochronology, rodingite dikes are rich in andradite and grossular garnet which are potentially amenable for geochronology. This research seeks to constrain the timescales and duration of hydration of the oceanic lithosphere within the Alpine Tethys ocean basin, and associated serpentinization, by examining Apennines rodingites from the Internal Ligurides (Italy). These rodingites experienced seafloor hydrothermal alteration and were obducted onto the continental margin during Alpine orogenesis. As a result, they are ideal for studying seafloor metasomatism as they were not affected by prograde subduction zone metamorphism and dehydration. Sr isotopic and trace element profiles were constructed across two rodingite-serpentinite transects, revealing a complex, multi-stage hydration history consisting of 1) Widespread serpentinization, 2) Gabbroic intrusions, 3) Rodingitization, and 4) Localized, late-stage advective fluid flow. Serpentinizing fluids locally display strong continental crustal isotopic signatures, while rodingitization fluids are characterized by seawater-like values. U-Pb geochronology on rodingite garnets produced an age of 96.1 ± 8.9 Ma, which could represent either the main rodingitization phase or the late-stage advective alteration. / Thesis (MS) — Boston College, 2023. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
|
3 |
The evolution of the oceanic lithospheric mantle: experimental and observational constraintsShejwalkar, Archana 12 April 2016 (has links)
The oceanic lithosphere forms as a residue of partial melting of the mantle beneath the mid-ocean ridge axis. Subduction of this residual layer has a profound impact on the Earth’s thermal and geochemical cycles as the recycling of this layer facilitates heat loss from the Earth’s interior and induces geochemical heterogeneities in the mantle. The goal of this study is to understand the thermal and geochemical evolution of the oceanic lithospheric mantle from a petrological perspective. An empirical geobarometer is calibrated for ocean island xenoliths in order to understand the thermal structure of the oceanic lithospheric mantle. The results of 0.1 MPa experiments from this study and high-pressure experiments from previous studies are used in the calibration. The uncertainties on pressures derived using the above geobarometer are high and hence could not be tested against thermal models for the oceanic lithosphere. The geochemical evolution of the oceanic lithospheric mantle involves post-melting geochemical modifications such as metasomatism. The geochemical evolution of the uppermost oceanic lithospheric mantle is studied using harzburgites from Hess Deep ODP Site 895, which are depleted in moderately incompatible elements relative to the global suite of abyssal peridotites. A comparison between Yb-abundances in Hess Deep harzburgites
iii
iv
and those of a model depleted MORB mantle (DMM) residue reveals that the harzburgites have undergone up to 25% melting, assuming 0.5% melt porosity. Higher light and middle rare earth elements in the Hess Deep harzburgites than the model DMM melting residue are interpreted as the result of plagioclase crystallisation from melts being extracted by diffuse porous flow through the upper mantle. The effect of plagioclase crystallisation does not affect the chemistry of residual mineral phases as evidenced from the depleted light rare earth element abundances in clinopyroxene relative to the bulk rock. Ocean island xenoliths are studied to understand when and where metasomatism occurs in the deeper portion of the oceanic lithosphere. The median values of measured and reconstructed bulk concentration of Al2O3 in most ocean island xenoliths is lower than in abyssal peridotites, which generally would be interpreted as indicating a higher extent of melting in the former. However, a comparison between Yb- abundances in ocean island xenoliths and abyssal peridotites with a model DMM melting residue suggests that the extents of melting in the suites of rocks are broadly similar. Although fewer in number than ocean island xenoliths, abyssal peridotites from several locations have low concentrations of moderately incompatible elements. Metasomatism is observed in both, ocean island xenoliths and abyssal peridotites in the form of higher bulk rock Ce and Nd concentration than the model DMM melting residue but the extent of metasomatism is higher in ocean island xenoliths. There is no correlation between the concentrations of bulk rock Ce, Nd, Sm and Eu of ocean island xenoliths and age of the oceanic lithosphere from which the xenoliths originate. It is interpreted that metasomatism in the lower oceanic lithospheric mantle occurs near the ridge axis above the wings of the melting column. / Graduate / 0996 / 0372
|
4 |
Three-dimensional shear wave velocity structure in the Atlantic upper mantleJames, Esther Kezia 21 June 2016 (has links)
Oceanic lithosphere constitutes the upper boundary layer of the Earth’s convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth’s surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (~75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (~200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for the Pacific, phase velocities for the Atlantic are not consistent with a half-space cooling model but are best explained by a plate-cooling model with thickness of 75 km and mantle temperature of 1400oC. Comparison with data such as basalt chemistry and seafloor elevation helps to separate thermal and compositional effects on shear velocity.
|
5 |
Transport de magma et processus d’assimilation-précipitation dans la croute océanique inférieure hétérogène : contraintes microstructurales et pétro-géochimiques de forages océaniques / Melt transport and assimilation-precipitation processes through the heterogeneous lower oceanic crust : microstructural and petro-geochemical constraints from drill coresFerrando, Carlotta 06 December 2017 (has links)
La croute océanique formée aux dorsales lentes a une composition hétérogène. Pour expliquer sa formation, il est nécessaire d’invoquer des processus d’interactions magma-roche. Afin de contraindre la contribution des processus de cristallisation et d’interaction magma-roche sur le budget géochimique et l’architecture de la croute océanique hétérogène, j’ai étudié deux séquences gabbroiques échantillonnées in situ à l’Atlantis Massif (AM, 30°N, Dorsale Médio-Atlantique, MAR) et l’Atlantis Bank (AB, 57°E, Dorsale Sud-Ouest Indienne, SWIR). J’ai effectué (i) une étude multi-échelle pétro-structurale et géochimique, combinée à une modélisation numérique, de gabbros primitifs forés à l’AM, et (ii) une étude pétrographique et géochimique de gabbros à olivines forés à l’AB. La croute océanique inférieure hétérogène échantillonnée au Site U1309 (AM) présente des troctolites riches en olivines (Ol-T). Elles se distinguent par des olivines partiellement dissoutes, relativement riches en Fo et en Ni, ainsi que par la co-précipitation de clinopyroxènes riches en Mg et de plagioclases. Ces caractéristiques suggèrent que les Ol-T sont le résultat de l’imprégnation d’un protolithe riche en olivines par un magma sous-saturé en olivine. Les profils géochimiques plats entre les minéraux adjacents suggèrent que la composition du protolithe a été modifiée par le magma entrant. Pourtant, le Ni, Li et Co montrent des compositions extrêmement variables à Mg# de l’olivine constant, ce qui suggère qu’ils préservent la signature géochimique du protolithe. La modélisation géochimique indique que ces variations sont héritées d’une hétérogénéité dans les harzburgites U1309. Les expériences en laboratoire ont démontré que la distribution de magma en milieux poreux est contrôlée par la composition modale de la roche percolée. La distribution hétérogène d’orthopyroxène dans le protolithe mantellique contrôle la quantité de magma entrant, et ainsi la quantité d’olivine dissoute, comme indiqué par les variations modales et compositionnelles observées dans les Ol-T à l’AM. La modélisation géochimique indique que la formation des Ol-T peut être expliquée par la percolation de magma et l’assimilation de 5% de protolithe mantellique. Une conséquence de ce processus de réaction est le décalage des compositions du magma à l’AM vers de cristallisation fractionnée apparentes à haute pression. Pourtant, aucune signature géochimique de haute pression n’est observée dans les MORBs à l’AM, alors qu’elles sont observées dans les MORBs d’une portion amagmatique de la SWIR (61°-67°E). La croute océanique à l’AB est faite de gabbros à olivines (75%) et de gabbros à oxides (20%), et par endroits intensément déformée. Les études préliminaires ont mis en évidence des textures indiquant l’assimilation de plagioclase par un magma d’imprégnation, ainsi que la cristallisation de clinopyroxène. Les gabbros à olivines montrent des compositions relativement évoluées. Des études précédentes des gabbros à olivines de l’AB ont montré que leur formation peut être attribuée à l’assimilation de la croute océanique par un magma saturé en clinopyroxène. Les études de l’AM et de l’AB révèlent des processus d’interactions magma-roche associés au transport de magma dans la croute océanique inférieure. Des caractéristiques texturales et géochimiques similaires ont été documentées à Kane (24°N, MAR) et dans les ophiolites Alpines-Apennines. Elles indiquent que les interactions magma-roche sont omniprésentes et contribuent à façonner la croute océanique inférieure aux dorsales lentes. L’étude de roches gabbroiques forées à Hess Deep suggèrent que les interactions magma-roche interviennent également aux dorsales rapides. Le transport réactif de magma dans la croute océanique joue un rôle majeur dans le processus de formation de la croute océanique dans son ensemble. Leur contribution dans la composition des MORBs est probablement contrôlée par la production de magma durant la remontée mantellique. / At slow-spreading mid-ocean ridges the lower oceanic crust is extremely heterogeneous, and its formation must be related to some extents of melt-rock interactions. To constrain the relative contribution of crystallization processes and melt-rock interactions on the geochemical budget and architecture of the slow-spread oceanic crust, I investigated two gabbroic sequences sampled in situ at the Atlantis Massif (AM, 30°N, Mid-Atlantic Ridge, MAR) and the Atlantis Bank (AB, 32°S, 57°E, Southwest Indian Ridge, SWIR), where gabbros are exposed by long-lived detachment faults. I performed (i) a multi-scale petro-structural, geochemical and numerical modeling study of primitive gabbroic rocks drilled at the AM, and (ii) a petrographic and geochemical study of olivine gabbros recovered at the AB. AM was drilled during IODP Expeditions 304/305. The heterogeneous lower oceanic crust recovered at Site U1309 presents discrete intervals of olivine-rich troctolites (Ol-T). They are distinguished by partially dissolved olivines with relatively high Fo (86) and Ni contents (>2000 ppm), and they are characterized by the co-precipitation of high Mg# (86-88) clinopyroxene and plagioclase. These characteristics suggest that Ol-T result from impregnation of an olivine-rich protolith by a melt undersaturated in olivine. The flat geochemical profiles across olivine and adjacent minerals suggest that the composition of the protolith was modified by this impregnating melt. Yet, Ni, Li and Co display extremely variable compositions at constant olivine Mg#, suggesting that they retain the signature of the precursor material. Modeling indicates that these chemical variations are likely inherited from the U1309D harzburgites. Experiments show that the melt distribution and paths in a porous media is controlled by the mineral modes of the host rock. The heterogeneous distribution of orthopyroxene in the precursor harzburgitic mantle locally drives the abundance of impregnating melt, leading to different extents of olivine dissolution, as evidenced by variations in mineral modes and chemistry of the AM Ol-T. Geochemical modeling indicates that the melt percolation and assimilation of about 5% of a mantle protolith can explain the formation of the Ol-T. One consequence of this reactive process in Hole U1309D is the shift of melt compositions toward apparent high pressure fractionation. However, no high pressure chemical signature is observed in MORBs from the AM, while it is recorded in MORBs from the nearly amagmatic region along the SWIR (61°-67°E). AB was drilled during IODP Expedition 360. The recovered lower oceanic crust is dominated by olivine gabbros (75%) and oxide gabbros (20%). The section is in places intensively deformed. Shipboard studies have documented textures of plagioclase assimilation by an invading melt crystallizing clinopyroxene. Compositions of olivine gabbros reach relatively evolved signature (Yb = 3-10 x C1-chondrite; MORB Yb = 19). Previous studies on olivine gabbros from AB showed that their formation can be ascribed to assimilation of an oceanic crust by clinopyroxene-saturated trace element enriched melts. The study of AM and AB reveals melt-rock interactions and mineral assimilation associated to melt transport through the accreting lower oceanic crust. Similar textural and chemical features are observed at Kane (24°N, MAR) and in ophiolite complexes (e.g., Alpine and Appennine ophiolites). These evidences indicate that melt-rock interactions are probably ubiquitous, and contribute to shaping the slow-spread lower oceanic crust. The characterization of gabbroic rocks drilled at Hess Deep suggests that melt-rock interactions may take place also at fast-spreading ridge. Melt transport and associated mineral assimilation processes likely play a major role in the building of the oceanic crust overall. Their contribution to the formation of MORB is likely controlled by melt productivity in the upwelling mantle.
|
6 |
Interactions magma-roche, déformation à haute température et anisotropie sismique dans le manteau de la transition continent-océan et dans la lithosphère océanique / Melt-rock interaction, High-temperature deformation, and seismic properties in the continent-ocean transition mantle, and in the oceanic lithosphereSatsukawa, Takako 08 February 2012 (has links)
Cette thèse regroupe deux études distinctes, qui documentent le contrôle des microstructures sur les propriétés sismiques des roches. La première partie traite du développement des orientations préférentielles cristallographiques (OPC) dans le manteau supérieur, associé aux interactions liquide/magma-roche, enregistré dans des xénolites de péridotites du bassin d'arrière-arc de la mer du Japon. Les caractéristiques microstucturales et géochimiques des échantillons étudiés montrent que l'ouverture arrière-arc active est associée à une déformation du manteau supérieure similaire à celle observée dans l'ophiolite d'Oman. L'initiation de l'extension d'arrière-arc n'est pas associée à de fortes interactions entre percolation magmatique et déformation, en comparaison avec les zones de rifting continentales, probablement en raison des taille et durée relativement petites de l'épisode d'ouverture. La seconde partie présente une base de données unique d'OPC de plagioclase de roches mafiques plus ou moins déformées. Les OPC sont classées en 3 types principaux; leurs caractéristiques en fonction du régime de déformation (magmatique ou plastique) sont présentées et discutées. Les propriétés sismiques calculées des roches gabbroiques montrent que l'anisotropie tend à croitre avec l'intensité des fabriques, bien qu'elle soit généralement faible, en raison des effets opposés des olivines/clinopyroxènes et du plagioclase. / This thesis compiles two distinct studies that both document the control of microstructures on rock seismic properties. The first part deals with the development of crystallographic preferred orientations (CPO) in the uppermost mantle associated with melt/fluid-rock interactions, recorded in peridotites xenoliths from the Japan sea back-arc basin. The microstructural and geochemical characteristics of the studied samples reveal that active spreading is associated to uppermost mantle deformation similar to that observed in the Oman ophiolite. At the onset of back-arc spreading, there are no strong interactions between melt percolation and deformation in comparison to continental rift zones, probably due to the relatively small size and short duration of the spreading event. The second part presents a unique database of plagioclase CPO from variously deformed mafic rocks. CPO are grouped in three main types; their characteristics as a function of deformation regime (magmatic or crystal-plastic) are outlined and discussed. Calculated seismic properties of gabbroic rocks show that anisotropy tends to increase as a function of fabric strength, although it is generally weak, due to the competing effect of olivine/clinopyroxene and plagioclase.
|
7 |
Contribution a l'etude du message magnetique porte par la lithosphere oceanique : l'altération des mineaux magnétiques - les anomalies magnétiques de haute résolution / Contribution to the study of the magnetic signal of the oceanic crust : alteration of magnetic minerals and high resolution magnetic anomaliesHoisé, Eva 19 September 2011 (has links)
Cette thèse concerne l’étude du message magnétique de la lithosphère océanique. Nous nous sommes, dans un premier temps, intéressés à l’évolution du signal magnétique à travers une section de croûte océanique complète et continue des basaltes jusqu’aux gabbros. Le but était de comprendre comment les propriétés magnétiques des roches peuvent nous renseigner sur les conditions d’altération dans la croûte océanique. Nous avons donc établi un jeu de données magnétiques (température de Curie, paramètres d’hystérésis, mesures magnétiques basse température) sur l’ensemble de la section de croûte océanique forée au site IODP 1256D, dans l’océan Pacifique. Ces données sont confrontées aux températures d’altération, établies par thermo barométrie et mettent en évidence une étroite relation entre l’altération des phases magnétiques et les températures d’altération. De plus, des analyses semi-quantitatives et des observations microscopiques (optique, MEB et MET) mettent en évidence un changement de structure cristalline, associée à une perte de titane, permettant la formation d’une phase secondaire, l’hydroschorlomite, dans un intervalle de forte altération des phases magnétiques (entre 670 et 1028 mbsf (meters below sea floor)). Dans un second temps, l’acquisition de profils d’anomalies magnétiques marines de surface et d’un profil d’anomalies de fond « deep tow » à travers le superchron du Crétacé (entre 83 et 120 Ma) nous a permis de tester la stabilité de polarité du champ géomagnétique durant cette période. Nous mettons en évidence la présence d’anomalies magnétiques : des anomalies de courtes longueurs d’onde ou « tiny-wiggles » à travers l’ensemble du superchron et des anomalies magnétiques de plus grande longueur d’onde, assimilables à de courts intervalles de polarité inverse. Nos mesures montrent que le comportement du champ magnétique durant le superchron n’est pas différent des périodes qui le précèdent (chrons M0-M1-M2) et le suivent (chrons 33n et 33r). La définition de superchron doit être remise en question. / So we, in a first part, studied the evolution of the magnetic signal through a section of a, complete and continuous, oceanic crust, from basalts to gabbros. In order to understand how the magnetic properties of rocks can tell us about the conditions of alteration in the oceanic lithosphere, we established a set of magnetic data (Curie temperature, hysteresis parameters, low temperature magnetic measurements) through the entire section of the oceanic crust, drilled at IODP Site 1256D, in the Equatorial Pacific Ocean. These magnetic data are compared to alteration temperatures, determined by thermobarometry (Alt et al., 2010) and show a close relationship between the alteration of the magnetic phases and the alteration temperatures, including the identification of an interval of strong alteration of the titanomagnetites (between 670 and 1028 mbsf (meters below sea floor). In addition, semi quantitative chemical analysis and microscopic observations (optical, SEM and TEM), performed on titanomagnetites, show a change in crystalline structure and a loss of titanium element (Ti4 +) in titanomagnetites to form a secondary phase rich in titanium, in this same interval of strong alteration. In a second part, the acquisition of numerous sea-surface magnetic profiles and a high resolution magnetic profile ("deep tow") through the Cretaceous Normal Superchron (83-120 Ma), allowed us to test the stability of the geomagnetic polarity of the superchron and to highlight the presence of numerous magnetic anomalies: anomalies of short wavelength or "tiny-wiggles” through the entire period and magnetic anomalies of greater length wave, similar to short intervals of reverse polarity. Our measurements show that the behavior of the magnetic field during the superchron is no different from previous periods (chrons M0-M1-M2) and the following magnetic period (chrons 33n and 33R) and the definition of ‘superchron’, long geomagnetic event without inversions, must be questioned
|
Page generated in 0.0625 seconds