• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis, characterization and application of supported nickel catalysts for the hydrogenation of octanal.

Mthalane, Samkelo. January 2010 (has links)
Three nickel based catalysts were prepared by the impregnation method (Ni/Al2O3 and Ni/SiO2) and co-precipitation method (Ni/ZnO). The catalysts were characterized by XRD, ICP-OES, BET-surface area and pore volume, SEM, TEM, TPR, NH3-TPD and in-situ XRD reduction. The catalytic activity of the catalysts in the liquid phase hydrogenation of octanal was studied at 110 °C and 50 bar. The effect of water as a co-feed on the catalytic activity of the catalysts was also investigated. Generally, all the catalysts were crystalline materials. The Ni/Al2O3 and Ni/ZnO catalysts contained NiO species that were “hard” to reduce, whereas the Ni/SiO2 catalyst was the easiest to reduce, according to the TPR and in-situ XRD reduction studies. The total acidity (μmol NH3/gcatal.) of the catalysts decreased in the following sequence: Ni/Al2O3 > Ni/ZnO > Ni/SiO2. The Ni/SiO2 and Ni/ZnO catalysts had intermediate and strong acidic sites, respectively, while the Ni/Al2O3 catalyst had weak-intermediate and strong acidic sites. The BET-surface area and pore volume of the catalysts decreased in the following order: Ni/Al2O3 > Ni/SiO2 > Ni/ZnO. The conversion of octanal for all the catalysts was ca. 90 %. The Ni/SiO2 and Ni/ZnO catalysts had octanol selectivities of over 99 % and the Ni/Al2O3 catalyst had 95 % octanol selectivity. The alumina support was observed to catalyze the formation of heavy products (C24 acetal, dioctyl ether and 2-hexyl-1-decanol). The water present in the feed poisoned the alumina sites that were responsible for the formation of heavy products thereby, making the catalyst more selective (> 99 %) to octanol. For the Ni/SiO2 catalyst the presence of water in the feed caused the octanal conversion to decrease with time-on-stream. The deactivation of the Ni/SiO2 catalyst, when water was used as a co-feed, was caused by the mechanical failure of the catalyst and also by the leaching of nickel metal during the reaction. / Thesis (M.Sc.)--University of KwaZulu-Natal, Durban, 2010.
2

Development and evaluation of an alkane bioconversion process using genetically modified Escherichia coli

Roux, Philipp Francois 04 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Alkanes can be used as an inexpensive feedstock to produce more valuable alcohols. The biotransformation of alkanes to alcohols provides an alternative to conventional chemical procedures. The scope of this research was to develop a process utilising a biocatalyst to catalyse the oxidation of an alkane to its corresponding alcohol on a larger scale than had been reported on in previous research. The research utilised a recombinant E. coli BL21(DE3) cell, containing the CYP153A6 operon in pET 28 vector, as the biocatalyst. The CYP153A6 enzyme catalyses the oxidation of octane to 1-octanol. The principle objective of the research was to determine the amount of 1-octanol that can be produced by a system utilising this strain of recombinant E. coli as a biocatalyst on a three orders of magnitude larger scale than what had previously been reported on for this reaction system. An additional objective was to model the 1-octanol production performance in the bioreactor. Bioconversion batch reactions, with excess octane used as a substrate, were conducted in 30ml McCartney bottles and in a 7.5L BioFlo 110 Modular Benchtop Fermentor (New Brunswick). The McCartney bottles were not equipped to actively control process conditions.The bioreactor was equipped to control process conditions such as temperature, pH and dissolved oxygen concentration. Experiments in the bioreactor were therefore described as being performed under controlled conditions. The procedures used to grow, maintain and harvest the biocatalyst cells were based on those developed by the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State. The product and substrate concentrations were determined through gas chromatography (GC) analysis. The McCartney bottle bioconversion reactions, with a 1.33ml reaction volume, produced 1.88 mg 1-octanol per gram of dry cell weight per hour. The bioreactor under controlled conditions, with a 2L reaction volume, produced 14.89 mg 1-octanol per gram of dry cell weight per hour. The formation of a secondary product, octanoic acid, was observed for the bioreactor under controlled conditions experiment at a production of 1.12 mg per gram of dry cell weight per hour. The McCartney bottle experiments did not produce any by-products. The 1-octanol production performance in the bioreactor experiments was empirically modelled. The empirical rate law was based on the form of the Monod equation, with the addition of a product inhibition term. The model achieved an average Root Mean Square Error of less than 5% when compared to experimental data, and was therefore concluded to be accurate within the range of experimental data and conditions tested for. The principal finding of the research is that the cells produced an order of magnitude more product in the bioreactor than in the McCartney bottles. The literature on this reaction system, however, reports only on smaller scale research than that performed in the bioreactor. The improved production results in the bioreactor therefore give the first insight into the potential that this technology has for being scaled up. Of equal significance is the finding that a secondary product developed during the biotransformations performed in the bioreactor. This refutes the assumption that the biocatalyst cells are unable to catalyse any secondary reactions. This aspect of the cells’ performance must be addressed before the biocatalyst cell strain can be considered to be a viable option for utilisation in large-scale processes. / AFRIKAANSE OPSOMMING: Alkane kan gebruik word as ‘n bekostigbare bron om meer waardevolle alkohol te produseer. Die biotransformasie van alkane na alkohol bied dus ‘n alternatief vir konvensionele chemiese prosedure. Die oogmerk en omvang van hierdie navorsing was om ‘n proses te ontwikkel waarin ‘n biokatalisator gebruik word om die oksidasie van ‘n alkaan tot sy ooreenstemmende alkohol te kataliseer, en om vas te stel hoeveel 1-oktanol vervaardig kan word deur ‘n herverenigde E. coli as katalisator gebruik. ‘n Rekombinante E. coli BL21(DE3) sel, wat die CYP153A6 operon in pET 28 vector bevat, is as biokatalisator gebruik. Die CYP153A6 ensiem kataliseer die oksidasie van oktaan na 1-oktanol. Biokonversie lot-reaksies, met oormatige oktaan wat as substraat gebruik word, is in 30ml McCartney bottels en in 7.5L BioFlo 110 Modular Benchtop Fermentor (New Brunswick) uitgevoer. Die bioreaktor was toegerus om kondisies van die proses soos temperatuur, pH and opgeloste suurstof-konsentrasie te kontroleer. Die prosedures wat gebruik is om die groei, onderhoud en oes van die biokatalisator selle te bewerkstellig, is gebaseer op prosedures wat ontwikkel is deur the Department van Microbiese, Biochemiese and Voedsel Biotegnologie van die Universiteit van die Vrystaat. Die produk- en substraat-konsentrasies is vasgestel deur gaschromatografie (GC) ontleding. Die McCartney bottel biokonversie-reaksie met ‘n 1.33ml reaksie-volume het 1.88 mg 1-oktanol per gram droeë-sel gewig opgelewer. Die bioreaktor, wat onder beheerde toestande ‘n 2L reaksie-volume het, het 14.89 mg 1-octanol per gram droeë-sel gewig gelewer. Onder beheerde eksperimentele kondisies is die vorming van ‘n sekondere produk, oktanol-suur, by die bioreaktor waargeneem teen 1.23 mg per gram droeë-sel gewig per uur. Die McCartney bottel eksperimente egter het geen newe-produkte opgelewer nie. Die ontwikkeling van die 1-oktanol in die bioreaktor-ekperimente is empiries gemodelleer. Die empiriese ‘rate law’ is gebaseer op ‘n vorm van die Monod- vergelyking, met byvoeging van ‘n produk-inhiberingsterm. Die model het ‘n gemiddelde vierkantswortel foutvariansie van minder as 5% opgelewer, vergeleke met die eksperimentele data, en word dus binne die rykwydte van die eksperimentele data, en die kondisies waarvoor getoets is, as akkuraat beskou. Die belangrikste bevinding is dat die selle in die bioreaktor ‘n orde van grootte meer produk gelewer het as die selle in die McCartney bottels. Die literatuur oor hierdie reaksie-sisteem berig egter slegs oor kleiner skaalse navorsing as wat in die bioreaktor gedoen is. Die verbeterde opbrengsresultate van die bioreaktor dui daarop dat laasgenoemde tegnologie die potensiaal inhou om opgegradeer te word. Die bevinding dat ‘n sekondere produk in die biotransformasie in die bioreaktor gevorm het, is beduidend. Dit weerspreek die aanname dat die biokatalisator-selle nie sekondere reaksies kataliseer nie. Hierdie aspek moet aangespreek word alvorens die biokataliseer-selle oorweeg kan word as ‘n lewensvatbare alternatief vir gebruik in grootskaalse prosesse.
3

Determinação de compostos orgânicos voláteis gerados em processos biológicos de produção de hidrogênio usando LLME-GC-FID / Determination of volatile organic compounds generated in biological processes of hydrogen production using LLME-GC-FID

Pavini, Weslei Diego [UNESP] 02 May 2017 (has links)
Submitted by Weslei Diego Pavini null (wesleydiego@gmail.com) on 2017-05-23T14:13:00Z No. of bitstreams: 1 Dissertação mestrado - Weslei D. Pavini.pdf: 7330663 bytes, checksum: a86ba8ec10a0627ea18d3883c094b461 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-05-23T18:18:34Z (GMT) No. of bitstreams: 1 pavini_wd_me_araiq_par.pdf: 737035 bytes, checksum: 22742b425e546a6ef2e994294d7d9349 (MD5) / Made available in DSpace on 2017-05-23T18:18:34Z (GMT). No. of bitstreams: 1 pavini_wd_me_araiq_par.pdf: 737035 bytes, checksum: 22742b425e546a6ef2e994294d7d9349 (MD5) Previous issue date: 2017-05-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Biorreatores têm sido estudados para obtenção de H2, um produto de alto valor agregado usado na indústria química e afim e na produção de energia. Neste trabalho foi desenvolvido um método para análise de compostos orgânicos voláteis (VOCs) produzidos em biorreatores para auxiliar na pesquisa e no controle operacional da produção de H2. Com base nos compostos de interesse foi otimizado um procedimento de microextração líquido-líquido (LLME) para recuperação destes do meio aquoso. Para isto foi usado 400 µL de 1-octanol, um solvente lipofílico e biodegradável, sulfato de sódio e 1,2 mL de amostra. Em seguida foi desenvolvido um método de separação e detecção por cromatografia em fase gasosa acoplada a um detector de ionização em chama (GC-FID). A separação foi feita usando coluna de polietilenoglicol de 30 m de comprimento e hélio como gás de arraste. O tempo de análise total foi de 16 min. Através deste método foi possível extrair, separar e quantificar 12 compostos: acetona, metanol, etanol, 1-propanol, 1-butanol, ácido acético, ácido propiônico, ácido butírico, ácido isovalérico, ácido valérico, ácido capróico e ácido láctico. Todas as curvas analíticas foram validadas usando a análise de variância (ANOVA). Além disso, foram calculadas algumas figuras de mérito, como o limite de detecção, o intervalo de quantificação, a exatidão e a precisão. Foram realizados testes de efeito matriz e estabilidade da amostra. Algumas amostras provenientes dos biorreatores de produção de H2 foram analisadas através do método proposto. O método desenvolvido mostrou-se preciso, exato e tem vasta gama de aplicação. / Bioreactors have been studied to obtain H2, a high value-added product used in the chemical and allied industry and in energy production. In this work a method was developed for the analysis of volatile organic compounds (VOCs) produced in bioreactors to assist in the research and operational control of H2 production. Based on the compounds of interest, a liquid-liquid micro extraction procedure (LLME) was optimized for recovery of these from the aqueous medium. 400 μl of 1-octanol, a lipophilic and biodegradable solvent, sodium sulfate and 1.2 mL of sample were used for this. Next, a separation and detection method was developed by gas chromatography coupled to a flame ionization detector (GC-FID). The separation was done using 30 m polyethylene glycol column and helium as carrier gas. The total analysis time was 16 min. This method was used to extract, separate and quantify 12 compounds: acetone, methanol, ethanol, 1-propanol, 1-butanol, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, caproic acid and lactic acid. All analytical curves were validated using analysis of variance (ANOVA). In addition, some figures of merit were calculated, such as limit of detection, interval of quantification, accuracy and precision. The matrix effect and stability of the samples were also performed. Some samples from the H2 production bioreactors were analyzed using the proposed method. The method developed proved accurate, precise and has a wide range of application.

Page generated in 0.059 seconds