• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Förstudie kring utformningen av ett lokalt produktionssystem av grön vätgas för Destination Gotlands innovationsfartyg, Gotland Horizon / Prestudy on Design of a Local Green Hydrogen Production System for Destination Gotland’s Innovation Vessel, ‘Gotland Horizon’

Hansson, Lars Ove Robin January 2022 (has links)
Den globala ekonomin är idag starkt kopplad till utsläpp av växthusgaser samtidigt som det finns en stark enighet bland världens ledande länder att kraftigt minska de globala utsläppen i enlighet med Parisavtalet. Vätgas som produceras från förnyelsebara energikällor anses utgöra en nyckelroll för ett antal olika applikationsområden de kommande decennierna, där bland transportsektorn. Trots att framställningsprocessen bygger på väl utvecklad teknik finns det än idag väldigt få storskaliga produktionsanläggningar av grön vätgas, men teknikutvecklingen inom området är skyndsam. Rederi AB Gotland är idag Sveriges äldsta rederi och således en av de största aktörerna inom Gotlands transportsektorn. Företaget ser idag över möjligheten för att driftsätta Sveriges första storskaliga vätgasdrivna gods- och passagerarfartyg, GotlandHorizon, vilket är en viktig del i företagets miljöarbete. Huvudsakligen avser företaget attvätgasen produceras lokalt på Gotland, vilket föranleder till en rad olika tekniska utmaningarrelaterade till elproduktion, vätgasframställning och distributionssystem. Med bakgrund av detta har en förstudie tillsammans med Uppsala universitet och projektet “Vätgasbaserad färjetrafik” genomförts för att påvisa och kartlägga viktiga aspekter kring ett framtida produktionssystem av grön vätgas samt kartlägga vilka tekniska lösningar som inom tidsramen för projektet är tekniskt genomförbara. Resultatet av förstudien ska kunna användas som grund för utformning av framtida beräkningsmodeller. Av förstudien framgår det att vattenelektrolys i kombination med en utbyggnation av vindkraft teoretiskt kan möta både det efterfrågade elbehovet för elektricitet och således Gotland Horizons vätgasbehov. Det uppskattade elbehovet för framställning av vätgas genom vattenelektrolys motsvarar dock Gotlands idag totala energikonsumtion, vilket såldes utgör en storutmaning. En annan viktig faktor för processen är en tillförlitlig processvattenförsörjning. Gotland har de senaste åren haft en problematisk grundvattensituation samt att dricksvattenproduktionen på Gotland är begränsad. I studien har de viktiga aspekterna kring utformningen av produktionssystemets analyserats. De ekonomiska aspekterna har också redovisats för att ligga till grund för en optimeringsmodell för vidare analys och optimering av produktionssystemet. Av de beräkningsmodeller som genomförts påvisas att både havsbaserad- samt landbaserad vindkraft kan tillgodose behovet av elproduktion för vattenelektrolys, det är snarare en fråga om hur systemet ska optimeras samt vilka synergieffekter som respektive system kan medförasom bestämmer systemets utformning. Solenergi har ansetts vara tekniskt möjligt men till bakgrund av att efterfrågan på elektricitet året runt är hög anses anläggningen bli orealistiskt stor. Också aspekter gällande produktionssystemet utformning, centraliserat eller decentraliserats, har diskuterats. Till bakgrund av de stora ekonomiska storskalsfördelarna som uppskattas för elektrolysörer inom de kommande åren anses ett centraliserat produktionssystem vara det mest tänkbara utifrån ett ekonomiskt perspektiv. Det har också konstaterats att havsbaserade vätgaspipelines kan bli aktuellt vid havsbaserad vätgasproduktion, det för att minimera kapitalkostnaderna för distributionen av energivektor, vilket skulle kunna minska produktionskostnaderna för vätgas från havsbaserad vindkraft. / The global economy today is strongly linked to greenhouse gas emissions while there is a strong consensus among the world's leading countries to significantly reduce global emissions in accordance with the Paris Agreement. Hydrogen produced from renewable energy sources is considered to play a key role within a several different application areas in the coming decades, including the transport sector. Even though the production process is based on welldeveloped technology, there are still very few large-scale production facilities of green hydrogen, but technological development in the field is rapid. Rederi AB Gotland is today Sweden's oldest shipping company and thus one of the largest players in Gotland's transport sector. The company is currently reviewing the possibility of commissioning Sweden's first large-scale hydrogen-powered freight and passenger vessel, Gotland Horizon, which is an important part of the company's environmental work. Mainly, the company intends that the hydrogen is produced locally on Gotland, which leads to a variety of technical challenges related to electricity production, hydrogen production and distribution systems. With this background, a feasibility study together with Uppsala University and the project "Hydrogen-based ferry traffic" has been carried out to demonstrate and map important aspects of a future production system of green hydrogen and to map which technical solutions within the time frame of the project are technically feasible. The results of the feasibility study can be used as a basis for designing future calculation models. The feasibility study shows that water electrolysis in combination with an expansion of wind power can theoretically meet both the demanded electricity demand for electricity and thus Gotland Horizon's hydrogen needs. However, the estimated electricity demand to produce hydrogen through water electrolysis corresponds to Gotland's current total energy consumption, which was sold poses a major challenge. Another important factor for the process is a reliable process water supply. In recent years, Gotland has had a problematic groundwater situation and the drinking water production on Gotland is limited. In the study, the important aspects of the design of the production system have been analyzed. The economic aspects have also been accounted for to form the basis for an optimization model for further analysis and optimization of the production system. From the calculation models carried out, it is shown that both offshore and onshore wind power can meet the need for electricity production for water electrolysis, it is rather a question of how the system should be optimized and what synergies each system can bring that determine the design of the system. Solar energy has been considered technically possible, but given that the demand for electricity all year round is high, the plant is considered to be unrealistically large. Aspects of the design of the production system, centralised or decentralised, have also been discussed. Considering the large economic economies of scale appreciated for electrolysers in the coming years, a centralized production system is considered the most conceivable from an economic perspective. It has also been recognized that offshore hydrogen pipelines may be relevant in offshore hydrogen production, in order to minimize the capital costs of energy vector distribution, which could reduce the production costs of hydrogen from offshore wind.
2

Offshore Hydrogen Production and Storage for Wave Energy Application : A Techno-Economic Assessment for a Japanese Context

Stafverfeldt, Andrea January 2023 (has links)
There is a well-established market for hydrogen, mainly for refining purposes, producing chemicals, and producing fertilizers. Today, almost all hydrogen is sourced from fossil fuels, with less than 1% of hydrogen sourced from renewable sources. Alternative solutions for fossil-free hydrogen are necessary to ensure that the demand for hydrogen can be met in a sustainable fashion. The objective of this study is to analyse the feasibility and cost-effectiveness of combining hydrogen production through electrolysis with electricity production from an array of wave energy converters to supply the hydrogen market with fossil-free hydrogen. A techno-economic analysis is performed for 16 cases of offshore hydrogen production and storage in eastern Japan, using three storage mediums; Compressed hydrogen, liquid hydrogen and ammonia. Technical and economical specifications of all components required for the production systems are modelled for each case to find the most beneficial system through the Levelized Cost Of Hydrogen (LCOH), which is compared to other available renewable and fossil hydrogen sources today. The production systems evaluated in this study reach an LCOH of $5.5-7.1 /kgH2 depending on the hydrogen storage medium, where compressed hydrogen is the cheapest. This can be considered competitive with other renewable hydrogen sources, but not with fossil counterparts. / Det finns en väletablerad marknad för vätgas, främst för raffinering och framställning av kemikalier samt gödningsmedel. Idag produceras nästan all vätgas av fossila bränslen, med mindre än 1% från förnybara källor. Alternativa lösningar för förnybar vätgas är nödvändiga för att möta efterfrågan på ett hållbart sätt. Syftet med denna studie är att analysera om det är ekonomiskt försvarbart att producera vätgas offshore genom elektrolys av el från vågkraftverk för att förse vätgasmarknaden med fossilfri vätgas. Detta utförs genom en tekno-ekonomisk analys av 16 fall av havsbaserad vätgasproduktion och lagring i östra Japan. Fallen behandlar tre lagringsmedium; komprimerad vätgas, flytande vätgas och ammoniak. Tekniska och ekonomiska specifikationer för alla komponenter som krävs för produktionssystemet modelleras för varje fall. Det mest fördelaktiga systemet beräknas genom Levelized Cost of Hydrogen (LCOH), som jämförs med andra tillgängliga förnybara och fossila produktionssystem för att avgöra systemets konkurrenskraft på marknaden. Produktionssystemen som utvärderas i denna studie har en LCOH från $5.5-7.1 /kgH2 beroende på lagringsmedium, där komprimerad vätgas är det billigaste. Detta resultat kan betraktas som konkurrenskraftigt med andra förnybara vätgaskällor, men inte med fossila motsvarigheter.

Page generated in 0.042 seconds