• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 1
  • Tagged with
  • 19
  • 19
  • 15
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

System Study of the Techno-Economic Potential of a Hydrogen System : A case study of Power to Mobility and Power to Power hydrogen systems, stand-alone or integrated with a CHP

Forndal, Lina, Greiff, Johanna January 2022 (has links)
Green hydrogen produced with renewable electricity has gotten more attention during the last years and its different usage areas has been identified as an important part of the transition to a fossil free society. In this project the potential of a stand-alone hydrogen system and a hydrogen system integrated with a CHP, are investigated regarding technical and economic feasibility. This is done through a case study at Jönköping Energi, a municipal energy company. The main interest for Jönköping Energi is to investigate Power to Mobility, PtM, where electricity is used to produce hydrogen that is sold as fuel for vehicles. Another usage case of interest for the company is Power to Power, PtP. In PtP, electricity is used to produce hydrogen when electricity prices are low, the hydrogen is then stored and later used to produce electricity again when the prices are higher. For a PtM-system an electrolyser, and a hydrogen storage are needed components. In addition to these components, a fuel cell is needed for a PtP-system. Feasible specific technology for Jönköping Energi is recommended based on a literature review and information regarding the CHP.   The combined PtM- and PtP-system is investigated in two contexts, integrated with Jönköping Energi’s CHP and stand-alone. Electricity prices affect the profitability of the studied systems and therefore scenarios with high and low prices are used. A script was created in MATLAB to do the calculations regarding economic and technical feasibility of the integrated and stand-alone system with high and low electricity prices. This resulted in a PtM-system with a Proton exchange membrane electrolyser of 1 MW and a pressurized hydrogen storage tank of 12 MWh, as the most profitable system with a hydrogen demand of 360 kg/day. The integrated system shows slightly higher Net Present Value than the stand-alone system. With low electricity prices, within both contexts, the system is profitable, but with high prices the system is not profitable, neither stand-alone nor integrated. A PtP-system with a Proton exchange membrane fuel cell is not economically viable to include in any system or scenario with current prerequisites. For it to be profitable, more volatile electricity prices than the previous years together with additional income from electricity grid balancing services are needed. Moreover, the investment cost needs to be almost completely subsidised and higher efficiencies of the components than available today are needed as well. The prerequisites needed in order for the PtP-system to be viable is not predicted to be plausible in the near future. However, with low electricity prices, a PtM-system is potentially profitable for Jönköping Energi, both integrated with the CHP and as a stand-alone system.
2

Disruptive Innovation in Green Energy Sectors: An Entrepreneurial Perspective

Hendriks, Kjel January 2021 (has links)
Background: Green hydrogen energy systems can address environmental and societal concerns within the energy sector. Therefore, increased attentions from both public and private stakeholders has led to the general perception that hydrogen systems can serve as a disruptive innovation.  Given that disruption innovation theory has seen increased entrepreneurial involvement over recent years, the study focuses on assessing the role of green entrepreneurs within the implementation of hydrogen systems through cross-collaborative efforts and disruptive innovation drivers.    Purpose: The development of a theoretical matrix that interconnects disruptive innovation, entrepreneurial involvement, and cross-collaborative initiatives to establish entrepreneurial positioning roles within the energy market.    Method: The epistemology chosen was interpretivist, and its ontology subjectivism. The research followed an inductive approach. The research was qualitatively conducted and adopted a case study approach. The data was collected through semi-structured interviews, and followed a theoretical sampling approach.   Conclusion: The study proposes a theoretical matrix that extended disruptive innovation theory to green entrepreneurship and concluded that high levels of cross-collaboration, and a high innovation impact, serve as key drivers for green entrepreneurial implementations of disruptive energy. Results highlight the need for entrepreneurial involvement across all stages of market implementations.
3

Bioremediation of Brewery Sludge and Hydrogen Production Using Combined Approaches

Garduno Ibarra, Itzcoatl Rafael 06 January 2023 (has links)
Hydrogen is re-emerging as a serious alternative to fossil fuels. It is a clean gas with high energy density and its combustion only generates water vapour. Nevertheless, the hydrogen industry has a significant carbon footprint since this gas is mostly derived from fossil fuels reforming processes. This project focusses on the development of sustainable alternatives to conventional hydrogen production, in which approaches based on dark fermentation (DF) using an inexpensive residue from the brewery industry as primary feedstock are presented. Firstly, a fungal pre-treatment (FT) was proposed to degrade a high-strength brewery waste slurry (BWS) to obtain an effluent with a lower concentration of chemical oxygen demand (COD) but rich in readily fermentable sugars for the ensuing DF, thus improving hydrogen yields (HY). Secondly, microbial electrolysis and fuel cells (MECs and MFCs) were proposed to assist DF, generating electricity in MFCs while improving HY by MECs. Coupling both microbial electrochemical technologies sequentially after DF did not show any advantage. However, promising results were obtained for electricity and hydrogen production when taking a single-staged approach. Treating BWS directly by MFCs produced 2.0 watts/g COD consumed, while the DF process assisted simultaneously by MECs (DF/MEC) produced 1.6 times more hydrogen than DF alone. An average HY of 2.32 ± 0.06 mol H₂/mol glucose was attained between both DF/MEC and DF after FT, hence approaching the theoretical value of 2.4 mol H₂/mol glucose, representing roughly a 50% improvement compared to DF alone. With an overall COD reduction above 76%, the DF after FT exhibited the highest energy conversion rate per substrate consumed (6.3 kJ/g COD). As valuable by-products obtained, up to 31 g/L of fungal biomass, which is appreciated in many state-of-the-art biomaterials applications, was produced by using BWS. While in the DF/MEC process, 18 g/L of butyric acid were generated, which is three times more than with DF alone. Butyric acid being the precursor to butanol and building block of biodegradable thermoplastics, this result is not without significance. The proposed approaches not only valorize BWS but also validate their economic and environmental attractiveness as promising alternative hydrogen production methods.
4

Diffusion of Innovation in the Hydrogen Industry : The Applications of Ultrapure Water Technologies into Green Hydrogen

Nova, Mahmudur Rahman, Ahmed Ismail Hsabo, Maaz January 2021 (has links)
For long now, the world has been depending on the fossil-fuels; mainly oil. But a lot of businesses are moving towards a sustainable future while considering higher growth. Green hydrogen: a solution for the sustainable future has been taking over now. Being the best alternative of fossil-fuels, green hydrogen has a long way to go when it comes to production and usage. Due to many challenges, this solution has not been completely adopted yet. The case company has an innovation that can support the green hydrogen, so we will use DOI, multi-level perspective and cluster theory to identify the variables that will interrelate with the diffusion rate, which will help us to understand the diffusion process in B2B business. For our thesis research, we have followed a case study approach with the intent to highlight those opportunities and what are the challenges that are hindering the green hydrogen growth. We wanted to seek into how the Diffusion of Innovation theory can be implemented into the hydrogen industry. With the assistance of a company Scarab, who has developed an innovation called Ultrapure water which has the potential to accelerate the growth of green hydrogen adoption; we wanted to look further into the case on how such innovation can contribute for a better green future . We conducted a semi-structured interview with multiple interview guides which was used for our research with the involvement of people from ultrapure water industry and hydrogen industry. Finally, we identified the strengths and weaknesses of UPW innovation, the drivers and hinders of green hydrogen, and how all these factors will interrelate to the diffusion rate of UPW innovation into green hydrogen.
5

Assessing current state and potential direction of fossil-free hydrogen development in Sweden

Jannah, Roudotul January 2023 (has links)
Hydrogen is under the spotlight due to its ability to decarbonize the hard-to-abate sector. Sweden, which aims to achieve net zero emissions by 2025, has incorporated hydrogen as an instrument to reach a decarbonization pathway. The Swedish Energy Agency announced that the hydrogen target covers a 5 GW electrolyzer installation needing an enormous electricity supply of around 22-42 TWh in phase 1. However, generating fossil-free hydrogen on a large scale is relatively new in Sweden’s history. There is an urgency to identify the current state of production, distribution, storage, and application of fossil-free hydrogen in Sweden. Comprehending the potential direction using a system thinking approach is also mainly absent. Thus, the study aims to fill those knowledge gaps and provide insight into hydrogen’s current state and future direction. The thesis evaluates materials through the qualitative research design with quantitative data supplementation. The system thinking approach is implemented to investigate the leverage points that can influence the system. The findings showed that various actors had proposed a total of 3.85 GW of electrolyzer installation, implying that 17-32 TWh of electricity should be available. The projects are primarily used to meet industrial demand in the electrofuel, iron and steel, and refinery sectors. However, insufficient electricity supply and investment could inhibit growth. Storage and pipeline infrastructure development is also lagging. Those elements should be resolved to achieve the hydrogen target. The study suggested that reducing production costs, increasing government support, and pursuing disruptive technology will accelerate the transition to a fossil-free hydrogen society.
6

Förstudie kring utformningen av ett lokalt produktionssystem av grön vätgas för Destination Gotlands innovationsfartyg, Gotland Horizon / Prestudy on Design of a Local Green Hydrogen Production System for Destination Gotland’s Innovation Vessel, ‘Gotland Horizon’

Hansson, Lars Ove Robin January 2022 (has links)
Den globala ekonomin är idag starkt kopplad till utsläpp av växthusgaser samtidigt som det finns en stark enighet bland världens ledande länder att kraftigt minska de globala utsläppen i enlighet med Parisavtalet. Vätgas som produceras från förnyelsebara energikällor anses utgöra en nyckelroll för ett antal olika applikationsområden de kommande decennierna, där bland transportsektorn. Trots att framställningsprocessen bygger på väl utvecklad teknik finns det än idag väldigt få storskaliga produktionsanläggningar av grön vätgas, men teknikutvecklingen inom området är skyndsam. Rederi AB Gotland är idag Sveriges äldsta rederi och således en av de största aktörerna inom Gotlands transportsektorn. Företaget ser idag över möjligheten för att driftsätta Sveriges första storskaliga vätgasdrivna gods- och passagerarfartyg, GotlandHorizon, vilket är en viktig del i företagets miljöarbete. Huvudsakligen avser företaget attvätgasen produceras lokalt på Gotland, vilket föranleder till en rad olika tekniska utmaningarrelaterade till elproduktion, vätgasframställning och distributionssystem. Med bakgrund av detta har en förstudie tillsammans med Uppsala universitet och projektet “Vätgasbaserad färjetrafik” genomförts för att påvisa och kartlägga viktiga aspekter kring ett framtida produktionssystem av grön vätgas samt kartlägga vilka tekniska lösningar som inom tidsramen för projektet är tekniskt genomförbara. Resultatet av förstudien ska kunna användas som grund för utformning av framtida beräkningsmodeller. Av förstudien framgår det att vattenelektrolys i kombination med en utbyggnation av vindkraft teoretiskt kan möta både det efterfrågade elbehovet för elektricitet och således Gotland Horizons vätgasbehov. Det uppskattade elbehovet för framställning av vätgas genom vattenelektrolys motsvarar dock Gotlands idag totala energikonsumtion, vilket såldes utgör en storutmaning. En annan viktig faktor för processen är en tillförlitlig processvattenförsörjning. Gotland har de senaste åren haft en problematisk grundvattensituation samt att dricksvattenproduktionen på Gotland är begränsad. I studien har de viktiga aspekterna kring utformningen av produktionssystemets analyserats. De ekonomiska aspekterna har också redovisats för att ligga till grund för en optimeringsmodell för vidare analys och optimering av produktionssystemet. Av de beräkningsmodeller som genomförts påvisas att både havsbaserad- samt landbaserad vindkraft kan tillgodose behovet av elproduktion för vattenelektrolys, det är snarare en fråga om hur systemet ska optimeras samt vilka synergieffekter som respektive system kan medförasom bestämmer systemets utformning. Solenergi har ansetts vara tekniskt möjligt men till bakgrund av att efterfrågan på elektricitet året runt är hög anses anläggningen bli orealistiskt stor. Också aspekter gällande produktionssystemet utformning, centraliserat eller decentraliserats, har diskuterats. Till bakgrund av de stora ekonomiska storskalsfördelarna som uppskattas för elektrolysörer inom de kommande åren anses ett centraliserat produktionssystem vara det mest tänkbara utifrån ett ekonomiskt perspektiv. Det har också konstaterats att havsbaserade vätgaspipelines kan bli aktuellt vid havsbaserad vätgasproduktion, det för att minimera kapitalkostnaderna för distributionen av energivektor, vilket skulle kunna minska produktionskostnaderna för vätgas från havsbaserad vindkraft. / The global economy today is strongly linked to greenhouse gas emissions while there is a strong consensus among the world's leading countries to significantly reduce global emissions in accordance with the Paris Agreement. Hydrogen produced from renewable energy sources is considered to play a key role within a several different application areas in the coming decades, including the transport sector. Even though the production process is based on welldeveloped technology, there are still very few large-scale production facilities of green hydrogen, but technological development in the field is rapid. Rederi AB Gotland is today Sweden's oldest shipping company and thus one of the largest players in Gotland's transport sector. The company is currently reviewing the possibility of commissioning Sweden's first large-scale hydrogen-powered freight and passenger vessel, Gotland Horizon, which is an important part of the company's environmental work. Mainly, the company intends that the hydrogen is produced locally on Gotland, which leads to a variety of technical challenges related to electricity production, hydrogen production and distribution systems. With this background, a feasibility study together with Uppsala University and the project "Hydrogen-based ferry traffic" has been carried out to demonstrate and map important aspects of a future production system of green hydrogen and to map which technical solutions within the time frame of the project are technically feasible. The results of the feasibility study can be used as a basis for designing future calculation models. The feasibility study shows that water electrolysis in combination with an expansion of wind power can theoretically meet both the demanded electricity demand for electricity and thus Gotland Horizon's hydrogen needs. However, the estimated electricity demand to produce hydrogen through water electrolysis corresponds to Gotland's current total energy consumption, which was sold poses a major challenge. Another important factor for the process is a reliable process water supply. In recent years, Gotland has had a problematic groundwater situation and the drinking water production on Gotland is limited. In the study, the important aspects of the design of the production system have been analyzed. The economic aspects have also been accounted for to form the basis for an optimization model for further analysis and optimization of the production system. From the calculation models carried out, it is shown that both offshore and onshore wind power can meet the need for electricity production for water electrolysis, it is rather a question of how the system should be optimized and what synergies each system can bring that determine the design of the system. Solar energy has been considered technically possible, but given that the demand for electricity all year round is high, the plant is considered to be unrealistically large. Aspects of the design of the production system, centralised or decentralised, have also been discussed. Considering the large economic economies of scale appreciated for electrolysers in the coming years, a centralized production system is considered the most conceivable from an economic perspective. It has also been recognized that offshore hydrogen pipelines may be relevant in offshore hydrogen production, in order to minimize the capital costs of energy vector distribution, which could reduce the production costs of hydrogen from offshore wind.
7

Offshore Hydrogen Production and Storage for Wave Energy Application : A Techno-Economic Assessment for a Japanese Context

Stafverfeldt, Andrea January 2023 (has links)
There is a well-established market for hydrogen, mainly for refining purposes, producing chemicals, and producing fertilizers. Today, almost all hydrogen is sourced from fossil fuels, with less than 1% of hydrogen sourced from renewable sources. Alternative solutions for fossil-free hydrogen are necessary to ensure that the demand for hydrogen can be met in a sustainable fashion. The objective of this study is to analyse the feasibility and cost-effectiveness of combining hydrogen production through electrolysis with electricity production from an array of wave energy converters to supply the hydrogen market with fossil-free hydrogen. A techno-economic analysis is performed for 16 cases of offshore hydrogen production and storage in eastern Japan, using three storage mediums; Compressed hydrogen, liquid hydrogen and ammonia. Technical and economical specifications of all components required for the production systems are modelled for each case to find the most beneficial system through the Levelized Cost Of Hydrogen (LCOH), which is compared to other available renewable and fossil hydrogen sources today. The production systems evaluated in this study reach an LCOH of $5.5-7.1 /kgH2 depending on the hydrogen storage medium, where compressed hydrogen is the cheapest. This can be considered competitive with other renewable hydrogen sources, but not with fossil counterparts. / Det finns en väletablerad marknad för vätgas, främst för raffinering och framställning av kemikalier samt gödningsmedel. Idag produceras nästan all vätgas av fossila bränslen, med mindre än 1% från förnybara källor. Alternativa lösningar för förnybar vätgas är nödvändiga för att möta efterfrågan på ett hållbart sätt. Syftet med denna studie är att analysera om det är ekonomiskt försvarbart att producera vätgas offshore genom elektrolys av el från vågkraftverk för att förse vätgasmarknaden med fossilfri vätgas. Detta utförs genom en tekno-ekonomisk analys av 16 fall av havsbaserad vätgasproduktion och lagring i östra Japan. Fallen behandlar tre lagringsmedium; komprimerad vätgas, flytande vätgas och ammoniak. Tekniska och ekonomiska specifikationer för alla komponenter som krävs för produktionssystemet modelleras för varje fall. Det mest fördelaktiga systemet beräknas genom Levelized Cost of Hydrogen (LCOH), som jämförs med andra tillgängliga förnybara och fossila produktionssystem för att avgöra systemets konkurrenskraft på marknaden. Produktionssystemen som utvärderas i denna studie har en LCOH från $5.5-7.1 /kgH2 beroende på lagringsmedium, där komprimerad vätgas är det billigaste. Detta resultat kan betraktas som konkurrenskraftigt med andra förnybara vätgaskällor, men inte med fossila motsvarigheter.
8

Optimal Dispatch of Green Hydrogen Production

Garcia Vargas, Nicolas January 2023 (has links)
This project proposes a hybrid system for hydrogen production, which includes a connection to the grid, a source of renewable energies, namely photovoltaic (PV), a Battery Energy Storage System (BESS), and a PEM (Proton Exchange Membrane) electrolyzer modelled from commercial technologies available. A dispatch optimization algorithm will evaluate the price of the energy inputs and the power available from the solar PV system and will decide the operation on an hourly basis to maximize net profit in a year timeframe. This algorithm will have a daily hydrogen production constraint. When the price of electricity is low, the energy is used for two purposes. First, to electrolyze water in the electrolyzer system and second, to store it in the BESS. The stored energy will be used to produce hydrogen when electricity prices are high or inject back to the grid when it is economically sound to do. The PV input will be used to alleviate the need for energy from the grid, therefore, it can be used to feed the electrolyzer or to store in the batteries or to inject back to the grid. In this study, a multi-energy system is modelled and its operation strategy for green hydrogen production is analyzed. Four topological scenarios were chosen, which include Scenario 1 (Grid + PEM), Scenario 2 (Scenario 1 + BESS), Scenario 3 (Scenario 2 + Grid injection), and Scenario 4 (Scenario 3 + Solar PV). These scenarios facilitate a comprehensive assessment of the system's economic and environmental performance contingent on the installed assets. In addition to the scenario analysis, the study broadens its scope by exploring two diverse geographical regions, Sweden and Spain, as case studies. This comparative approach offers invaluable insights into the role of factors like lower electricity prices and reduced solar energy availability, as observed in the Swedish case, versus the dynamics of higher electricity prices and abundant solar energy in the Spanish context. Lastly, the research undertakes a thorough sensitivity analysis, considering two pivotal factors with great influence over the system's behavior: hydrogen pricing and BESS capacity. This exploration enriches our understanding of how variations in these factors can impact the system's operational and economic viability. / Detta arbete presenterar ett hybridsystem för produktion av vätgas som integrerar elnätsanslutning, förnybar energiförsörjning genom solceller (PV), ett batterilager (BESS) och en PEM-elektrolysör. För detta energisystem har en optimeringsalgoritm för systemdrift skapats. Denna algoritm utvärderar energipriser och tillgänglig kapacitet från PV-systemet, och driftar systemet på timbasis för att optimera nettovinsten över ett år, med dagliga produktionsgränser för vätgas. När elpriset är lågt används energin för två ändamål: Att elektrolysera vatten i elektrolyssystemet, och att lagra det i batterilagret (BESS). Den lagrade energin från BESS kommer att användas för att producera vätgas när elpriserna är höga eller för att injicera tillbaka i elnätet när det är ekonomiskt försvarbart. Energin från PV-systemet används för att lindra behovet av energi från elnätet och kan användas för att driva elektrolysören, eller för att lagra i batterierna, eller för att injicera tillbaka i elnätet. I denna studie modelleras en elektrolysör, baserat på kommersiellt tillgängliga teknologier, och en driftsstrategi utvecklas för produktionen av grön vätgas. Fyra unika scenarier valdes ut: Scenario 1 (Nät + PEM), Scenario 2 (Scenario 1 + BESS), Scenario 3 (Scenario 2 + Injektion till Elnät) och Scenario 4 (Scenario 3 + Solenergi från PV). Dessa scenarier underlättar en omfattande bedömning av systemets ekonomiska och miljömässiga prestanda beroende på installeradetillgångar. Utöver scenarioanalysen vidgar studien sin omfattning genom att utforska två olika geografiska regioner, Sverige och Spanien, som fallstudier. Denna jämförelse ger värdefulla insikter i systemfaktorernas roll, där det Svenska fallet (med lägre elpriser och minskad tillgänglighet av solenergi) ställs emot the Spanska fallet (med högre elpriser och rikligt med solenergi). Slutligen genomför forskningen en noggrann känslighetsanalys och beaktar två avgörande faktorer med stor påverkan över systemets beteende: Priset på såld vätgas och BESS-kapaciteten. Denna utforskning berikar vår förståelse för hur variationer i dessa faktorer kan påverka systemets operativa och ekonomiska livskraft.
9

Global Hydrogen Infrastructure Transport Model in 2050: A model-based analysis of green hydrogen trade

Avşar, Alperen 30 May 2023 (has links)
The consequences of the climate crisis and the increasing energy demand make the energy transi-tion crucial and necessary. Green hydrogen has a significant potential for a low-carbon energy transition. New policies and strategies emerge in line with energy transition and hydrogen poli-cies. This study has presented a model-based outline for the global green hydrogen supply and trade infrastructure in 2050 focusing on supply cost and potential using a cost minimization linear pro-gramming (LP) model which is implemented in the General Algebraic Modeling System (GAMS) with two scenarios. The results of the Hydrogen Policies Scenario are presented which examines today's hydrogen strategies and initiatives, as well as where the evolution of current technologies could take the hydrogen and energy sectors in 2050. The global hydrogen trade volume reaches 605 Mt (megaton) hydrogen trade per year, with North Africa dominating at 210 Mt. In conclusion, solar power and pipeline infrastructure will be the decisive force of the expansion of the global hydrogen trade.:Concept Methods Hydrogen Policies Conclusion Results
10

Evaluating electrolyser setups for hydrogen production from offshore wind power: A case study in the Baltic Sea

Franzén, Kenzo January 2023 (has links)
As part of the transition towards a fully sustainable energy system, green hydrogen shows great potential to decarbonise several hard-to-abate sectors. To provide the fossil-free electricity required for electrolysis, offshore wind power has emerged as a suggested option. In this report, four scenarios using different electrolyser placements and technologies are compared and applied in a 30-year case study considering a 1 GW offshore wind farm in the Baltic Sea. The scenarios are evaluated through the optimisation of electrolyser capacities, full system modelling and simulation, a techno-economic assessment, as well as a literature review of technological readiness, safety aspects and operational considerations. It is shown that a range of installed capacities offers only slight differences in levelised costs and that the optimal sizes to a large part depend on future electrolyser cost developments. A 1:1 sizing ratio between electrolyser capacity and maximum available power is not suggested for any of the studied configurations. Further, the simulations indicate that electrolyser inefficiencies constitute 63.2–68.5% of the total energy losses. Power transmission losses are relatively small due to the short transmission distance, while the power demands of several subsystems are nearly insignificant. Onshore H2 production using an alkaline electrolyser system is highlighted, offering the highest system efficiency and largest hydrogen production, at 55.93% and 2.23 Mton, respectively. This setup is further shown to be the most cost-efficient, offering a levelised cost of hydrogen at 3.15 €/kgH2. However, obstacles in the form of social and environmental concerns and regulations are seemingly larger compared to the scenarios using offshore electrolysis. Further, rapid future cost developments for electrolysers are likely to strengthen the case for offshore and PEM electrolyser configurations. A range of research opportunities are highlighted to fill the identified knowledge gaps and enable further insights. / Como parte de la transicion hacia un sistema energético totalmente sostenible, el hidrógeno verde muestra un gran potencial para descarbonizar varios sectores en los que es difíciles de conseguir. La energía eólica marina ha surgido como una opción para suministrar la electricidad libre de fósiles necesaria para la electrólisis. En este informe se comparan y aplican cuatro escenarios que utilizan diferentes ubicaciones y tecnologías de electrolizadores en un estudio de caso a 30 aoñs que considera un parque eólico marino de 1 GW en el Mar Báltico. Los escenarios se evalúan mediante una optimización de la capacidad de los electrolizadores, la modelización y simulación de todo el sistema, una revisión bibliográfica de la disponibilidad tecnológica, teniendo en cuenta los aspectos de seguridad y las consideraciones operativas. Se demuestra que una gama de capacidades instaladas ofrece sólo ligeras diferencias en los costes nivelados y que los tamaños óptimos dependen en gran medida de la evolución futura de los costes de los electrolizadores. No se recomienda una relación de tamaño de 1:1 entre entre la capacidad del electrolizador y la potencia máxima disponible. Además, las simulaciones indican que las ineficiencias del electrolizador constituyen entre el 63,2% y el 68,5% de las pérdidas totales de energía. Las pérdidas de transmisión de energía son relativamente pequeñas debido a la corta distancia de transmisión, mientras que las demandas de energía de varios subsistemas son casi insignificantes. Destaca la producción de H2 en tierra utilizando un sistema de electrolizador alcalino, que ofrece la mayor eficiencia del sistema y la mayor producción de hidrógeno, con un 55,93% y 2,23 Mton respectivamente. Además, este sistema es el más rentable, con un coste nivelado del hidrógeno de 3,15 €/kgH2. Sin embargo, los obstáculos sociales, medioambientales y normativos parecen ser mayores que en el caso de la electrólisis en alta mar. Además, es probable que la rápida evolución de los costes de los electrolizadores refuerce las configuraciones de electrolizadores marinos y PEM. Se destacan en el documento una serie de oportunidades de investigación con el fin de completar el estado del arte identificado.

Page generated in 0.4513 seconds