• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 6
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 137
  • 104
  • 73
  • 32
  • 32
  • 23
  • 19
  • 18
  • 17
  • 16
  • 15
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Phase I Clinical Trial of Recombinant Oncolytic Newcastle Disease Virus for Intracranial Meningioma

King, Jamie N. 14 July 2017 (has links)
Meningioma is one of the most commonly diagnosed intracranial tumors in dogs and humans. Treatment failures resulting in local recurrence and death remain common in tumors of high grade, prompting a need for additional therapeutic options that are both effective and affordable. Genetic modification of the LaSota strain of Newcastle Disease Virus (rLAS) has allowed the virus' fusion protein cleavage site to be replaced with that belonging to urokinase plasminogen activator (rLAS-uPA). This site is cleavable exclusively by the uPA receptor (uPAR), which is overexpressed in canine meningioma. The rLAS-uPA represents a targeted therapy that has the potential to be efficacious against meningioma when administered systemically. A Phase I clinical trial was designed to evaluate the safety and preliminary efficacy of rLAS-uPA administered to dogs with presumptive intracranial meningioma. The primary endpoint was to define the safety of rLAS-uPA, as determined by serial clinical and laboratory assessments during and after viral administration, using standard toxicity metrics defined by the Veterinary Cooperative Oncology Group (VCOG). Secondary end-points included anti-tumor activity quantified by magnetic resonance imaging (MRI) assessment of tumor size, and characterization of immune responses to the rLAS-uPA. Four dogs completed the trial without significant toxicity. No objective tumor responses were noted on MRI from any dog. All dogs produced antiviral antibodies and increased circulating cytokines during the course of treatment. No virus was recovered from plasma, urine, or cerebrospinal fluid. These results indicate that further investigation into the rLAS-uPA dose intensity and interval are required to further develop this therapy. / Master of Science / The use of a modified Newcastle Disease Virus intravenous infusion to treat brain tumors in dogs has been shown to have no overt significant adverse effects. However, further investigation is required to determine the efficacy and optimal dosing protocol for this potential treatment.
42

Improving intraperitoneal adenovirus virotherapy for ovarian cancer

Thoma, Clemens Matthias Manuel January 2011 (has links)
The use of intraperitoneal (i.p.) adenovirus virotherapy of ovarian cancer is currently limited by insufficient efficacy and high toxicity. Both factors are associated with adenovirus serotype 5 (Ad5) in this setting and may be serotype-specific. Low levels of uptake receptors (CAR and αV integrins) on ovarian tumour cells and widespread immunity against Ad5 among patients appear to restrict efficacy and intraperitoneal inflammatory responses against Ad5 were among the reasons for the termination of a phase II/III clinical trial in ovarian cancer. This thesis sought to overcome these obstacles by investigating the alternative adenovirus serotypes Ad3 and Ad11. For these viruses lower pre-existing antiviral immunity and utilisation of different uptake receptors have been reported. Furthermore, virus cloaking with novel polymers which could impart enhanced protection from neutralisation was examined. In vitro, wild-type Ad3, Ad5 and Ad11 displayed differential oncolytic activity in a panel of ovarian cancer cell lines which partly correlated to uptake receptor expression and virus internalisation. However, some cell lines displayed lysis resistance in a serotype-specific manner. While the inflammatory response six hours after i.p. administration of Ad11 in CD46-transgenic mice did not differ from Ad5, in long-term studies of repeated administration Ad5 induced significantly more severe pathologic effects in the form of adhesions and liver toxicity than Ad11 or mock-treatment. Oncolysis inhibition assays using malignant exudate samples demonstrated greater neutralisation of Ad3 and Ad5 in comparison to Ad11 at low concentrations of samples. Notably, 10-fold less Ad11 than Ad5 was required for oncolytic efficacy at a sample concentration of 10%. In an ex vivo model of ascites from ovarian cancer patients Ad5 modified with novel polymer formulations achieved at least 50% cell kill in six of eight samples, in contrast to two of eight samples for non-modified Ad5. These data suggest that virotherapy using Ad11 might be advantageous over Ad3 or Ad5. The lack of strong inflammation and the possibility to decrease treatment doses due to less neutralisation of Ad11 might result in considerably improved patient safety. Chemical modification of Ad with novel polymers presents an exciting advancement in overcoming treatment neutralisation in adenovirus virotherapy.
43

Targeting Tumour Antigen Heterogeneity with Dual-Specific Adoptive Cell Transfer

Fisher, Robert January 2021 (has links)
Through the years, cancer therapies have progressed rapidly, pouring out novel treatments such as gene therapy, small molecule therapies and immunotherapy. One such immunotherapy, adoptive cell transfer (ACT), augmented through the addition of a chimeric antigen receptor (CAR), has proven success in treatment of hematological malignancies. Additionally, oncolytic viruses (OV) and OV-based (OVV) therapies, have shown promising results in both clinical and pre-clinical studies. In most instances, when applied as a monotherapy, the aforementioned treatment methods are incapable of inducing complete tumour remission. The Wan lab has developed an approach combining ACT with OVV therapies that dramatically increase therapeutic benefit resulting in complete regression of well-established solid tumours. Despite promising results, certain tumours can still escape this combination therapy through antigen loss resulting in antigen negative relapse (ANR). To further augment the therapy, the addition of a secondary receptor (CAR) provides the ACT multiple avenues of attack to prevent ANR. In this dissertation, we define culture conditions that promote strong expression of the CAR alongside confirmation of function in an in vitro setting. Following, it is demonstrated that OVV boosted dual-targeting T cells carry strong T cell activity by measure of cytokine release in vivo. Despite promising T cell activity data, dual-specific T cells are unable to improve tumour control and survival once relapse occurs. The failure to control relapse remains unclear however evidence points towards lack of T cell persistence, poor CAR function in vivo and a lack of endogenous T cell response leading to compounding effects that prevent dual-targeting T cells from preventing ANR. Although dual specific therapies have shown poor efficacy in preventing ANR, further study must be completed to identify areas of improvement – such as persistence, as the potential for success in using dual-targeting T cells coupled with OVVs still lies untapped. / Thesis / Master of Science (MSc)
44

Development of a Novel Model for Exploring the Role of Regulatory T-cells in Oncolytic HSV Cancer Therapy

Baird, William H. 03 August 2011 (has links)
No description available.
45

Assessing the Oncolytic Capacity of Conditionally Replicating Adenovirus Armed with p14 Fusion Associated Small Transmembrane Protein and the Adenovirus Death Protein

Del Papa, Joshua 02 August 2019 (has links)
Intratumoral injection of oncolytic viruses provides a direct means of tumor cell elimination for inoperable tumors. Unfortunately, oncolytic vectors based on human adenovirus (HAdV) typically do not spread efficiently throughout the tumor mass, reducing the efficacy of treatment. In this thesis, I explore the efficacy of conditionally replicating HAdV vectors expressing either the p14 Fusion Associated Small Transmembrane (FAST) protein (CRAdFAST) or p14 FAST protein in combination with the adenovirus death protein (CRAdFAST-ADP). The p14 FAST protein mediates cell-cell fusion, which may enhance spread of the virus-mediated, tumor cell-killing effect, while ADP aids in cell lysis and HAdV spread at late times in infection. I first explored the efficacy of CRAdFAST in the 4T1 immune competent mouse model of cancer. Treatment with CRAdFAST resulted in enhanced cell death compared to vector lacking the p14 FAST gene in vitro, but did not reduce the tumor growth rate in vivo. The 4T1 model was significantly resistant to HAdV infection and propagation, so I next explored CRAdFAST efficacy in human A549 cell culture and a xenograft mouse model of cancer. In the human A549 lung adenocarcinoma model of cancer, CRAdFAST showed significantly improved oncolytic efficacy in vitro and in vivo. In an A549 xenograft tumor model in vivo, CRAdFAST induced tumor cell fusion which led to the formation of large acellular regions within the tumor, and significantly reduced the tumor growth rate compared to control vector. Finally, to assess the use of a newly constructed CRAdFAST vector co-expressing the adenovirus death protein (ADP), a new model was explored comprised of CMT-64.6 mouse lung carcinoma cells which are syngeneic with Balb/C mice. This model was significantly more sensitive to HAdV infection and CRAdFAST induced fusion than the 4T1 cell line. In this model, expression of ADP and p14 FAST from a CRAdFAST-like vector (CRAdFAST-ADP) resulted in significant oncolytic synergy in vitro but not in vivo. My results indicate that expression of p14 FAST protein, and potentially ADP, from an oncolytic HAdV can improve vector efficacy for the treatment of cancer, but improved in vivo models will be required to analyze the full preclinical potential of these oncolytic HAdV vectors.
46

Activity of oncolytic vaccinia virus vectors in ovarian cancer

Whilding, Lynsey May January 2012 (has links)
Oncolytic vaccinia virus has great potential in the treatment of cancer and two engineered strains have entered clinical trials. As the advent for oncolytic vaccinia virus as an approved therapy beckons, it is critical to consider some of the barriers that may hinder this progress. These include suboptimal delivery of the virus to tumour sites, incomplete destruction of the tumour mass, and a lack of full understanding of the way in which oncolytic vaccinia kills its target cells. This thesis attempts to address these issues, with a particular focus on ovarian cancer. As ovarian cancer is generally restricted to the peritoneal cavity, intraperitoneal delivery may be preferable over intravenous delivery. Here, it is shown that Lister-dTK, an engineered vaccinia strain, is able to selectively replicate in ovarian tumours, including metastases to the liver following intraperitoneal delivery. To determine whether Lister-dTK could potentially be used in combination with current therapies for ovarian cancer, the effect of cisplatin and Lister-dTK together was assessed in vitro but showed no improvement in overall cell death. In an attempt to further improve the anti-tumour efficacy of Lister-dTK, the extracellular matrix protein (ECM) decorin was expressed from the virus. Decorin interacts with various signalling pathways and is proposed to enhance virus spread. However, abrogation of EGFR and TGFβ signalling could not be demonstrated in vitro, nor could improved virus spread. In an intraperitoneal model of ovarian cancer, Lister-mDCN did not demonstrate enhanced efficacy over a control virus. To determine the mechanisms of ovarian cancer cell death induced by Lister-dTK, the roles of apoptosis, autophagy and necrosis were investigated. Whilst some features of both apoptosis and autophagy were observed, inhibition of these pathways did not attenuate Lister-dTK. It is proposed that necrosis is the primary cause of cell death but that this process may occur in a regulated manner.
47

The role of the DNA damage and repair pathways in the efficacy of oncolytic adenovirus for ovarian cancer

Tookman, Laura January 2016 (has links)
Defects within the DNA damage response (DDR) pathways are common in human malignancies. This is especially true in high-grade serous ovarian cancer (HGSOC) where defects within the Homologous Recombination (HR) pathway may be present in up to 50% of tumours. Oncolytic adenovirus is a potential novel therapy for human malignancies. These viruses infect malignant cells and multiply selectively within them causing cell death and release of mature virions. Here, I have investigated the role of the DDR in determining the efficacy of the E1A-CR2 deleted adenovirus type 5 (Ad5) vector, dl922-947, in ovarian cancer. I show that infection with dl922-947 stimulates a robust DDR within the host cell, which the virus manipulates in order to ensure optimal viral replication. In a panel of HGSOC cell lines, the extent of overreplication of genomic DNA and the degree of genomic damage following infection with dl922-947 was shown to correlate closely with viral efficacy. Functional HR, however, promoted viral DNA replication and augmented overall anti-cancer efficacy. Mechanistically, both BRCA2 and RAD51 localised to viral replication centres within the infected cell nucleus. RAD51 co-localisation was also demonstrated in cells with defective HR and occurred independently of BRCA2. In addition, a direct interaction was identified between RAD51 and adenovirus E2 DNA binding protein. Using functional assays of HR competence, I show that Ad5 infection does not alter cellular ability to repair DNA double-strand break damage via HR. These data suggest that oncolytic adenoviral therapy may be most clinically relevant in tumours with intact HR function. Using a high-throughput siRNA DNA repair screen, potential novel targets have been identified that can increase the efficacy of dl922-947 (for example: NONO) and also result in increased resistance (RPA). These results highlight the complex interplay between adenovirus and host cell. Further understanding of these pathways is vital to increase efficacy, develop biomarkers and improve patient selection into clinical trials for these therapies.
48

Harnessing the Heat Shock Response to Raise Refined Therapeutic Outcomes

Hall, Alexis K. 02 May 2008 (has links)
Activated Heat Shock Transcription Factor 1 (HSF1) has received attention in recent literature as a therapeutic effector in diseases of protein misfolding, as an immune modulating adjuvant in tumor regression, and as a trigger for gene therapy transcription. In its normal function, activated HSF1 enhances heat shock protein (Hsp) expression when additional molecular chaperoning is required (i.e., in situations of proteotoxic stress, including thermal stress) in a process known as the heat shock (HS) response. Thus, HSF1 acts as an environmental sensor, and a harness based on the biology of this capability enables transcription of genes for engineered purposes. The hypothesis of this thesis is that a harness of the heat shock response, when paired with a therapeutic mechanism, will refine novel therapies. Extensions to the concept of deliberately activating HSF1's normal functions for therapeutic purposes are examined through in vitro trials and in vivo preliminary studies that feature the use of HSF1 as a regulator of therapy. Successful in vitro work translated to pioneering preclinical studies, launched at the University of Florida's Center for Environmental and Human Toxicology. Collaboration supported the development of an innovative project to treat solid tumors using a recombinant virus system. The system was designed to facilitate intratumoral delivery of a previously characterized molecular switch, which was newly engineered to control cytotoxic gene transcription that produced dramatic consequences in cells of human origin. Central to the targeting of the in vivo therapy, is a transient, initial trigger: a thermal dose, delivered to solid tumors, which localizes HSF1 activation (a constitutively active mouse HSF1 construct was also produced to aid clarification of physiological consequences associated with deliberately upregulating HSF1 activity in vivo). Gene transcription was expected to ensue to both cause and sustain tumor regression through other regulatory elements of the molecular switch. Results demonstrated practical potential to achieve a therapeutic outcome of solid tumor regression and define contemporary challenges that continuing research directions (e.g.: production of additional viral vectors, an improved animal model, and a refined heat system) now confront in order to target and safely regulate even more potent, novel therapeutic agents.
49

Oncolytic Viruses as a Potential Approach to Eliminate the HIV Reservoir

Costiniuk, Cecilia T. 12 March 2013 (has links)
Similar to cancer cells, HIV-infected cells differ from HIV-uninfected cells in that they have altered interferon signaling pathways, the apparent reason for the selectivity of certain oncolytic viruses (OVs). Therefore, it was hypothesized that use of an OV, such as recombinant Maraba virus (MG1), may be a potential approach to eliminate latently-infected cells constituting the HIV reservoir while sparing HIV-uninfected cells. This was studied in U1, ACH-2, OM-10 and J1.1 cells and their respective HIV-uninfected parent cell lines in addition to CD4+CD25-HLADR- cells from HIV-infected individuals on effective antiretroviral therapy. Although MG1 infected and killed latently HIV-infected U1 cells to a greater degree than the HIV-uninfected parent U937 cells, this was not observed in the other HIV-infected cell lines and their respective parent cell lines. Furthermore, results from primary cells suggest that MG1 alone does not appear to eliminate cells which comprise the major HIV reservoir. Challenges of studying the HIV reservoir and priorities for future studies examining the use of OVs as a potential strategy to eliminate the HIV reservoir are discussed.
50

Impact of novel oncolytic virus HF10 on cellular components of the tumor microenviroment in patients with recurrent breast cancer

Nakao, A, Nishiyama, Y, Kodera, Y, Kikumori, T, Sugimoto, H, Takeda, S, Nomoto, S, Imai, T, Sugae, T, Fujii, T, Kanzaki, A, Gewen, T, Yamamura, K, Shikano, T, Nomura, N, Kasuya, H, Sahin, TT 04 1900 (has links)
名古屋大学博士学位論文 学位の種類 : 博士(医学)(課程) 学位授与年月日:平成25年1月31日 Tevfik Tolga SAHIN氏の博士論文として提出された

Page generated in 0.0648 seconds