• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diffusion multiple et retournement temporel des ondes ultrasonores dans les milieux granulaires secs et immergés / Multiple scattering and time reversal of ultrasound in dry and immersed granular media

Harazi, Maxime 23 November 2017 (has links)
Le retournement temporel (RT) est une méthode qui permet de faire revivre à une onde sa vie passée et de la faire ainsi reconverger sur la source qui lui a donné naissance. Au cours de cette thèse, nous avons étudié – expérimentalement et numériquement – le RT des ondes ultrasonores dans des milieux granulaires. En se propageant de grains en grains, les ondes ultrasonores fournissent une sonde unique du réseau hétérogène 3D des contacts. Pour des ondes se propageant en régime de diffusion multiple, nous montrons que la focalisation est globalement robuste mais toutefois sensible à des mouvements des grains à des échelles spatiales bien plus fines que la longueur d’onde. À cet égard, la propagation d’une onde ultrasonore à travers le réseau discret et métastable des contacts entre grains apparaît comme une situation intermédiaire entre l’instabilité du mouvement d’une particule dans un gaz de Lorentz et la propagation d’une onde ultrasonore dans une matrice homogène remplie d’obstacles diffusants. Lorsque l’amplitude de la source augmente, nous entrons dans un régime nonlinéaire où l’onde elle-même provoque des réarrangements du milieu, ce qui conduit à la dégradation de la focalisation obtenue par retournement temporel de ladite onde. Celle-ci n’agit alors plus seulement comme une sonde, mais aussi comme une « pompe ». Enfin, nous montrons que le RT d’une onde de faible amplitude, mais allongée dans le temps par la diffusion multiple, peut être utilisé pour focaliser une onde de grande amplitude en un point du milieu et y déclencher ainsi de façon contrôlée des réarrangements irréversibles du réseau des contacts. L’ensemble de ces résultats est supporté par un modèle numérique vectoriel fondé sur un système masses-ressorts percolé bidimensionnel. / : Time reversal (TR) is a technique which gives the possibility to make a wave relive its life in reverse chronology, and to focus back to its source. In this thesis, TR of ultrasound in granular media has been investigated experimentally and numerically. By propagating from grain to grain, ultrasounds provide a unique probe of the heterogeneous 3D contact network. We show that for multiply scattered waves, the focusing is essentially robust but sensitive to displacements of grains on a scale much smaller than the wavelength. In this respect, the ultrasound propagation through the discrete and metastable contact network between the grains appears to represent an intermediary situation between the instability in the propagation of a particle in a Lorentz gas and the propagation of ultrasounds in an homogeneous medium filled with scatterers. When the source amplitude is increased, a non-linear regime is reached where the wave itself triggers rearrangements in the medium, thus degrading the quality of the TR focusing. In this regime, the wave acts not only as a probe, but also as a « pump ». Finally, we show that the TR of a small-amplitude multiply-scattered wave can be used to focus a high-amplitude wave in the medium and trigger in a controlled way irreversible rearrangements of the contact network. These results are supported by a vectorial numerical model based on a 2D percolated masses-springs network.
2

Shaping Green's Functions in Cavities with Tunable Boundary Conditions : From Fundamental Science to Applications / Façonner des fonctions de Green dans des cavités avec des conditions aux limites reconfigurables : de la Science Fondamentale aux Applications

del Hougne, Marc Philipp 14 September 2018 (has links)
Cette thèse étudie le façonnage de champs électromagnétiques micro-ondes dans des cavités présentant des conditions aux limites reconfigurables. Le dispositif expérimental s'appuie sur une metasurface électroniquement reconfigurable qui couvre partialement les parois d'une cavité et qui permet ainsi de contrôler la façon dont les ondes y sont réfléchies. Le premier chapitre explore des aspects fondamentaux. D’abord, une étude paramétrique du façonnage d'un champ d'ondes électromagnétiques monochromatique et stationnaire en cavité est proposée en fonction d'un degré de contrôle introduit. Selon la valeur de ce paramètre, il est possible de concentrer de l'énergie en un endroit donné de la cavité de façon prédictible, de reconfigurer totalement cette cavité, ou bien de décider d'obtenir une résonance à une fréquence qui n'en supportait pas auparavant. Ensuite, l’imposition d’un comportement chaotique à une cavité de géométrie régulière est démontrée et une application au brassage des modes en chambre réverbérante est donnée. Dans la suite, la possibilité d’ajuster le couplage antenne-cavité est abordée, et une adaptation parfaite et dynamiquement configurable de l’impédance est proposée. Le reste du premier chapitre considère des champs transitoires. Dans un premier temps, la focalisation spatio-temporelle d’une impulsion fortement réverbérée dans une cavité en utilisant uniquement le contrôle spatial des ondes offert par la metasurface est démontrée, puis le lien avec le couplage entre les dégrées de liberté spatiaux et temporels du milieu de propagation est fait. Enfin, un dispositif permettant la reconfiguration répétée des conditions aux limites d'une cavité en un laps de temps inférieur au temps de vie des photons est réalisé, et des résultats préliminaires sont montrés. Dans le deuxième chapitre, des applications aux systèmes de communication sans fil multi-utilisateurs sont proposées. D’abord, dans la limite d’un bas facteur de qualité de la cavité, il est montré qu’un formalisme matriciel permet de décrire l’impact de la metasurface sur le champ. Cette matrice, mesurée sans information de phase, permet alors de focaliser le champ sur une ou plusieurs positions simultanément. Ensuite, la possibilité d’obtenir une diversité de canaux optimale (orthogonalité des canaux) en façonnant idéalement le désordre d’un milieu de propagation à l'aide de metasurfaces est établie. Finalement, le formalisme matriciel est utilisé afin d’introduire un concept de calcul analogique réalisé par le milieu désordonné en façonnant le front d’onde incident. Il est dès lors conclu qu’avec une infrastructure standard de Wi-Fi dans une maison, en combinaison avec une metasurface simple, cette idée peut être implémentée. Le concept est enfin transposé au domaine optique avec une fibre multimode. Au cours du troisième chapitre, quelques applications du façonnage d'ondes en milieux réverbérants aux capteurs des environnements connectés sont étudiées. D’abord, la possibilité de concentrer des champs électromagnétiques ambients sur des circuits redresseurs afin d’obtenir des tensions de sortie utiles est démontrée. De plus, grâce aux non-linéarités intrinsèques du redresseur, ceci est possible même sans avoir un retour direct du redresseur sur l’intensité du champ incident. Ensuite, un détecteur de mouvement hors ligne de vue et « intelligent » est proposé, qui profite d’un co-design de sa couche physique et du traitement de données. Enfin, il est démontré que même des objets non-coopératifs dans un environnement complexe peuvent être localisés grâce à leur contribution à la diffusion des ondes dans ledit milieu. L’équivalence d’utiliser la diversité fréquentielle ou bien le façonnage d’ondes dans ce contexte est établie. / In this thesis, the shaping of microwave fields in chaotic cavities with tunable boundary conditions is studied experimentally. The experiments leverage a metasurface reflect-array that partially covers the cavity walls to tune the reverberation of waves inside the cavity. The first chapter explores several fundamental aspects. First, the achievable degree of control over stationary monochromatic wave fields is thoroughly investigated, and various regimes are identified, ranging from partial control over the wave field up to the limiting case of discrete resonances that can be tuned at wish. Next, the possibility to convert a cavity of regular geometry into one displaying chaotic characteristics by modulating the boundary conditions is examined and an application to non-mechanical mode-stirring in reverberation chambers is given. Then, the ability to tune the coupling between an antenna inside a cavity and the cavity itself is studied, revealing the opportunity of achieving (dynamically tunable) perfect impedance matching. The chapter goes on to consider spatio-temporal wave fields, and the re-focusing of such transient fields at a desired instant with the purely spatial control of the metasurface is demonstrated; moreover, the interplay of spatial and temporal degrees of freedom is addressed. Finally, an experimental platform enabling the rapid modulation of cavity boundary conditions within the photon lifetime is presented. The second chapter considers applications to multi-user wireless communication systems. First, it is shown that a matrix formalism to capture the impact of the metasurface on the wave field can be formulated in the regime of low reverberation, and even without access to phase information focusing on a single as well as on multiple targets is demonstrated. Second, it is shown that the channel diversity, which dominates the achievable capacity of information transfer, can be optimized by tweaking the environment’s disorder; perfectly orthogonal channels are obtained without any software or hardware efforts on the transmit or receive side, and the benefits of the implied minimal cross-talk are illustrated for the scenario of wirelessly transmitting a full-color image. Third, the matrix formalism is leveraged to propose a scheme of analog computation that counter-intuitively uses a disordered instead of a carefully tailored propagation medium, by appropriately shaping the incident wave front. A proof-of-concept demonstration suggests that combining ubiquitous Wi-Fi hardware in an indoor environment with a simple metasurface is sufficient to implement the concept. Finally, the concept is also implemented in the optical domain using a multimode fiber. The third chapter outlines a few applications for sensors in context-aware environments. First, it is shown that by shaping ambient wave fields, they may be concentrated on harvesting devices to increase the output voltage available for sensor powering; moreover, the non-linear nature of the harvesting device enables to do so without direct feedback from the target, using indirect feedback from the second harmonic. Second, a smart around-the-corner motion detector for complex environments is presented, enjoying a co-design of hardware and processing software by using a dynamic metasurface aperture; the latter is essentially a small (but still electrically large) disordered cavity with tunable boundaries that leaks tunable random radiation patterns that couple differently to the environment’s modes. Third, it is shown that objects may be precisely localized in complex environments even if they are non-cooperative by establishing signatures of their location that leverage their scattering contribution; this is demonstrated both with a frequency diverse and a wavefront shaping scheme, and the equivalence of the respective degrees of freedom is established.

Page generated in 0.0879 seconds