Spelling suggestions: "subject:"microwave cavity"" "subject:"microwave eavity""
1 |
The development of a vibrating wire viscometer and a microwave cavity resonator for the measurement of viscosity, dew points, density, and liquid volume fraction at high temperature and pressure.Kandil, Mohamed E. January 2005 (has links)
This thesis describes the development and testing of two apparatuses; a vibrating wire viscometer to measure the viscosity of fluids over a wide range of temperature and pressure; and a microwave cavity resonator to measure dew points, gas phase densities, and liquid drop out volumes. Viscosity and density of downhole fluids are very important properties as their values can determine the economic viability of a petroleum reservoir. A vibrating wire viscometer has been developed with an electrically insulating tensioning mechanism. It has been used with two wires, of diameters (0.05 and 0.150) mm, to measure the viscosity of methylbenzene and two reference fluids with viscosities of (10 and 100) mPa·s at T = 298 K and p = 0.1 MPa, at temperatures in the range (298 to 373) K and pressures up to 40 MPa, where the viscosity covers the range (0.3 to 100) mPa·s, with a standard uncertainty < 0.6 %. The results differ from literature values by < ±1 %. The results demonstrate that increasing the wire diameter increases the upper operating viscosity range of the vibrating wire viscometer, a result anticipated from the working equations. For the microwave cavity resonator, the method is based on the measurements of the resonance frequency of the lowest order inductive-capacitance mode. The apparatus is capable of operating at temperatures up to 473 K and pressures below 20 MPa. This instrument has been used to measure the dew pressures of {0.4026CH4 + 0.5974C3H8} at a temperature range from 315 K up to the cricondentherm ˜ 340 K. The measured dew pressures differ by less than 0.5 % from values obtained by interpolation of those reported in the literature, which were determined from measurements with experimental techniques that have quite different potential sources of systematic error than the radio-frequency resonator used here. Dew pressures estimated from both NIST 14 and the Peng-Robinson equation of state lie within < ±1 % of the present results at temperature between (315 and 337) K while predictions obtained from the Soave-Redlich-Kwong cubic equation of state deviate from our results by 0.4 % at T = 315 K and these differences increase smoothly with increasing temperature to be -2.4 % at T = 337 K. Densities derived from dielectric permittivity measurements in the gas phase lie within < 0.6 % of the values calculated from the Soave-Redlich-Kwong cubic equation of state and about 1 % from values obtained with the Harvey and Prausnitz correlation based on a mixture reduced density. The calculations with Kiselev and Ely parametric crossover equation of state (based on Patel-Teja EOS) gave deviations < 0.7 %. Liquid volume fractions, in the 2-phase region, were measured from (0.5 to 7) cm3 in a total volume of about 50 cm3 at different isochors. The measured liquid volume fractions differ from values obtained with the Soave-Redlich-Kwong cubic equation of state by between 0 and 3 % at T < 326 K and about 8 % on approach to the critical region. The large deviations observed in the critical region were anticipated because of the known poor performance of the cubic equations of state with regard to the calculation of the liquid density in the vicinity of the critical temperature.
|
2 |
Microwave Properties of Liquids and Solids, Using a Resonant Microwave Cavity as a ProbeHong, Ki H. 05 1900 (has links)
The frequency shifts and Q changes of a resonant microwave cavity were utilized as a basis for determining microwave properties of solids and liquids. The method employed consisted of varying the depth of penetration of a cylindrical sample of the material into a cavity operating in the TM0 1 0 Mode. The liquid samples were contained in a thin-walled quartz tube. The perturbation of the cavity was achieved by advancing the sample into the cavity along the symmetry axis by employing a micrometer drive appropriately calibrated for depth of penetration of the sample. A differentiation method was used to obtain the half-power points of the cavity resonance profile at each depth of penetration. The perturbation techniques for resonant cavities were used to reduce the experimental data obtained to physical parameters for the samples. The probing frequency employed was near 9 gHz.
|
3 |
Efficient discrete modelling of axisymmetric radiating structuresAgunlejika, Oluwafunmilayo January 2016 (has links)
This thesis describes research on Efficient Discrete Modelling of Axisymmetric Radiating Structures . Investigating the possibilities of surmounting the inherent limitation in the Cartesian rectangular Transmission Line Modelling (TLM) method due to staircase approximation by efficiently implementing the 3D cylindrical TLM mesh led to the development of a numerical model for simulating axisymmetric radiating structures such as cylindrical and conical monopole antennas. Following a brief introduction to the TLM method, potential applications of the method are presented. Cubic and cylindrical TLM models have been implemented in MATLAB and the code has been validated against microwave cavity benchmark problems. The results are compared to analytical results and the results obtained from the use of commercial cubic model (CST) in order to highlight the benefit of using a cylindrical model over its cubic counterpart. A cylindrical TLM mesh has not previously been used in the modelling of axisymmetric 3D radiating structures. In this thesis, it has been applied to the modelling of both cylindrical monopole and the conical monopole. The technique can also be applied to any radiating structure with axisymmetric cylindrical shape. The application of the method also led to the development of a novel conical antenna with periodic slot loading. Prototype antennas have been fabricated and measured to validate the simulated results for the antennas.
|
4 |
Shaping Green's Functions in Cavities with Tunable Boundary Conditions : From Fundamental Science to Applications / Façonner des fonctions de Green dans des cavités avec des conditions aux limites reconfigurables : de la Science Fondamentale aux Applicationsdel Hougne, Marc Philipp 14 September 2018 (has links)
Cette thèse étudie le façonnage de champs électromagnétiques micro-ondes dans des cavités présentant des conditions aux limites reconfigurables. Le dispositif expérimental s'appuie sur une metasurface électroniquement reconfigurable qui couvre partialement les parois d'une cavité et qui permet ainsi de contrôler la façon dont les ondes y sont réfléchies. Le premier chapitre explore des aspects fondamentaux. D’abord, une étude paramétrique du façonnage d'un champ d'ondes électromagnétiques monochromatique et stationnaire en cavité est proposée en fonction d'un degré de contrôle introduit. Selon la valeur de ce paramètre, il est possible de concentrer de l'énergie en un endroit donné de la cavité de façon prédictible, de reconfigurer totalement cette cavité, ou bien de décider d'obtenir une résonance à une fréquence qui n'en supportait pas auparavant. Ensuite, l’imposition d’un comportement chaotique à une cavité de géométrie régulière est démontrée et une application au brassage des modes en chambre réverbérante est donnée. Dans la suite, la possibilité d’ajuster le couplage antenne-cavité est abordée, et une adaptation parfaite et dynamiquement configurable de l’impédance est proposée. Le reste du premier chapitre considère des champs transitoires. Dans un premier temps, la focalisation spatio-temporelle d’une impulsion fortement réverbérée dans une cavité en utilisant uniquement le contrôle spatial des ondes offert par la metasurface est démontrée, puis le lien avec le couplage entre les dégrées de liberté spatiaux et temporels du milieu de propagation est fait. Enfin, un dispositif permettant la reconfiguration répétée des conditions aux limites d'une cavité en un laps de temps inférieur au temps de vie des photons est réalisé, et des résultats préliminaires sont montrés. Dans le deuxième chapitre, des applications aux systèmes de communication sans fil multi-utilisateurs sont proposées. D’abord, dans la limite d’un bas facteur de qualité de la cavité, il est montré qu’un formalisme matriciel permet de décrire l’impact de la metasurface sur le champ. Cette matrice, mesurée sans information de phase, permet alors de focaliser le champ sur une ou plusieurs positions simultanément. Ensuite, la possibilité d’obtenir une diversité de canaux optimale (orthogonalité des canaux) en façonnant idéalement le désordre d’un milieu de propagation à l'aide de metasurfaces est établie. Finalement, le formalisme matriciel est utilisé afin d’introduire un concept de calcul analogique réalisé par le milieu désordonné en façonnant le front d’onde incident. Il est dès lors conclu qu’avec une infrastructure standard de Wi-Fi dans une maison, en combinaison avec une metasurface simple, cette idée peut être implémentée. Le concept est enfin transposé au domaine optique avec une fibre multimode. Au cours du troisième chapitre, quelques applications du façonnage d'ondes en milieux réverbérants aux capteurs des environnements connectés sont étudiées. D’abord, la possibilité de concentrer des champs électromagnétiques ambients sur des circuits redresseurs afin d’obtenir des tensions de sortie utiles est démontrée. De plus, grâce aux non-linéarités intrinsèques du redresseur, ceci est possible même sans avoir un retour direct du redresseur sur l’intensité du champ incident. Ensuite, un détecteur de mouvement hors ligne de vue et « intelligent » est proposé, qui profite d’un co-design de sa couche physique et du traitement de données. Enfin, il est démontré que même des objets non-coopératifs dans un environnement complexe peuvent être localisés grâce à leur contribution à la diffusion des ondes dans ledit milieu. L’équivalence d’utiliser la diversité fréquentielle ou bien le façonnage d’ondes dans ce contexte est établie. / In this thesis, the shaping of microwave fields in chaotic cavities with tunable boundary conditions is studied experimentally. The experiments leverage a metasurface reflect-array that partially covers the cavity walls to tune the reverberation of waves inside the cavity. The first chapter explores several fundamental aspects. First, the achievable degree of control over stationary monochromatic wave fields is thoroughly investigated, and various regimes are identified, ranging from partial control over the wave field up to the limiting case of discrete resonances that can be tuned at wish. Next, the possibility to convert a cavity of regular geometry into one displaying chaotic characteristics by modulating the boundary conditions is examined and an application to non-mechanical mode-stirring in reverberation chambers is given. Then, the ability to tune the coupling between an antenna inside a cavity and the cavity itself is studied, revealing the opportunity of achieving (dynamically tunable) perfect impedance matching. The chapter goes on to consider spatio-temporal wave fields, and the re-focusing of such transient fields at a desired instant with the purely spatial control of the metasurface is demonstrated; moreover, the interplay of spatial and temporal degrees of freedom is addressed. Finally, an experimental platform enabling the rapid modulation of cavity boundary conditions within the photon lifetime is presented. The second chapter considers applications to multi-user wireless communication systems. First, it is shown that a matrix formalism to capture the impact of the metasurface on the wave field can be formulated in the regime of low reverberation, and even without access to phase information focusing on a single as well as on multiple targets is demonstrated. Second, it is shown that the channel diversity, which dominates the achievable capacity of information transfer, can be optimized by tweaking the environment’s disorder; perfectly orthogonal channels are obtained without any software or hardware efforts on the transmit or receive side, and the benefits of the implied minimal cross-talk are illustrated for the scenario of wirelessly transmitting a full-color image. Third, the matrix formalism is leveraged to propose a scheme of analog computation that counter-intuitively uses a disordered instead of a carefully tailored propagation medium, by appropriately shaping the incident wave front. A proof-of-concept demonstration suggests that combining ubiquitous Wi-Fi hardware in an indoor environment with a simple metasurface is sufficient to implement the concept. Finally, the concept is also implemented in the optical domain using a multimode fiber. The third chapter outlines a few applications for sensors in context-aware environments. First, it is shown that by shaping ambient wave fields, they may be concentrated on harvesting devices to increase the output voltage available for sensor powering; moreover, the non-linear nature of the harvesting device enables to do so without direct feedback from the target, using indirect feedback from the second harmonic. Second, a smart around-the-corner motion detector for complex environments is presented, enjoying a co-design of hardware and processing software by using a dynamic metasurface aperture; the latter is essentially a small (but still electrically large) disordered cavity with tunable boundaries that leaks tunable random radiation patterns that couple differently to the environment’s modes. Third, it is shown that objects may be precisely localized in complex environments even if they are non-cooperative by establishing signatures of their location that leverage their scattering contribution; this is demonstrated both with a frequency diverse and a wavefront shaping scheme, and the equivalence of the respective degrees of freedom is established.
|
5 |
Electrically detected magnetic resonance in semiconductor and carbon nanodevicesLang, Volker January 2012 (has links)
Electrically detected magnetic resonance (EDMR) is a sensitive spectroscopic technique, which can be used to readout few to single electron spins in semiconductor and carbon nanodevices for applications in solid state quantum information processing (QIP). Since only electrically active defects contribute to the EDMR signal, this technique can be used further to investigate defects and impurities in photovoltaic devices, in which they limit the sunlight-to-energy conversion efficiency significantly. Here, I employ X-band EDMR for semiconductor defect analysis and identify the most important recombination centres in Czochralski silicon with oxide precipitates, which can be intentionally grown to confine detrimental metallic impurities to inactive regions of the wafer in order to serve as a defect-free substrate for modern silicon photovoltaic devices. Those experiments show that oxide precipitation is accompanied by the formation of silicon dangling bonds. Furthermore, I describe a very promising route towards the fabrication and readout of few to single electron spins in carbon nanotube devices, which can be characterised structurally via transmission electron microscopy in order to relate their electrical and spin properties with their structure. Finally, I employ EDMR to read out electron spin states in donor-doped silicon field-effect transistors as a prerequisite for their application in QIP. I report on a novel cryogenic probe head for EDMR experiments in resonant microwave cavities operating at 0.35 T (9.7 GHz, X-band) and 3.34 T (94 GHz, W-band). This approach overcomes the inherent limitations of conventional X-band EDMR and permits the investigation of paramagnetic states with a higher spectroscopic resolution and signal intensity. Both advantages are demonstrated and discussed. I further report on a novel mechanism giving rise to the EDMR effect in donor-doped silicon field-effect transistors, which is capable of explaining why the EDMR signal intensities of the conduction electrons are enhanced by a factor of ∼100, while the donor resonance signals increase by a factor of ∼20 from X- to W-band only. The spin-relaxation and dephasing times are extracted from a series of pulsed-EDMR measurements and confirm this model. The author gratefully acknowledges funding from Trinity College Oxford, Department of Materials, EPSRC DTA, and Konrad-Adenauer-Stiftung e.V. (Begabtenförderung).
|
6 |
Contribution à l’étude de techniques de codage analogique pour l’imagerie microonde active et passive / Contribution to the study of analog encoding for active and passive microwave imagingKpre, Ettien lazare 26 October 2017 (has links)
Les systèmes d’imagerie microonde suscitent un grand intérêt actuellement dans le domaine de la recherche, notamment pour des applications de sécurité (scanners corporels, vision à travers les murs, etc). Plusieurs techniques d’acquisition déjà existantes permettent d’optimiser l’ouverture rayonnante afin de garantir une bonne résolution sur l’image finale. Cependant, le verrou actuel des systèmes d’imagerie est de pouvoir atteindre un temps de rafraîchissement temps réel et d’adresser un grand nombre d’antennes. La majorité des systèmes actuels peinent à concilier la rapidité et la résolution, tout en garantissant une bonne sensibilité. Les travaux réalisés dans ce manuscrit visent à proposer une alternative aux systèmes existants en se basant sur des techniques de codage analogique des signaux d’antennes. Globalement, l’objectif est de minimiser le nombre de récepteurs sans affecter les performances. Les architectures proposées sont essentiellement basées sur le concept du Radar MIMO (pour les systèmes actifs) et du radiomètre à synthèse d’ouverture interférométrique ou SAIR (pour les systèmes passifs). Ces deux systèmes permettent de réduire considérablement le nombre d’antennes sans affecter la résolution de l’image, ce qui permet une première levée de contraintes. En sus, des composants compressifs entièrement passifs sont utilisés pour réduire le nombre de récepteurs des systèmes Radar MIMO et SAIR. Ces composants à diversité spatiale et fréquentielle présentent des fonctions de transfert orthogonales. Utilisés en émission, ils permettent un adressage simultané et indépendant des antennes du réseau. En réception, ils permettent de coder les signaux reçus par les antennes vers un nombre de voies RF considérablement réduit. En appliquant des techniques de décodage appropriées, les signaux reçus par chacune des antennes peuvent être estimées afin d’appliquer les algorithmes dédiés à la reconstruction de l’image. Ces composants offrent l’avantage de réduire fortement le nombre de voies RF tout en conservant la même ouverture rayonnante et en autorisant une acquisition simultanée des signaux. Des démonstrateurs laboratoires ont été réalisés en bande S afin de montrer une preuve de faisabilité des alternatives proposées. Enfin, les résultats obtenus ont fait l'objet d'une demande de brevet et un prototype d'imageur radiométrique à ondes millimétriques est en cours de prototypage dans le cadre du projet ANR-PIXEL. / Microwave imaging systems are currently attracting great attention in the field of research, especially for security applications (body scanners, vision through walls, etc.). Several acquisition techniques already exist to optimize the antenna aperture in order to guarantee a good resolution on the final image. However, the current lock of imaging systems is to be able to achieve a real-time acquisition and address numerous antennas. Most of the current systems struggle to reconcile fast imaging and resolution while ensuring good sensitivity. The work carried out in this manuscript aims at proposing an alternative to the existing systems based on analog coding techniques of the antenna signals. Overall, the goal is to minimize the number of receivers without affecting performances. The proposed architectures are based essentially on the concept of the MIMO radar (for active systems) and the Synthetic Aperture Interferometric Radiometer or SAIR (for passive systems). These two systems allow a significant reduction of the number of antennas without affecting the resolution of the image, thus enabling a first lifting of constraints. In addition, passive compressive components are used to reduce the number of receivers in the MIMO Radar and the SAIR systems. These components with spatial and frequency diversity exhibit orthogonal transfer functions. Used in transmission, they allow simultaneous and independent addressing of each element of the antenna array. In reception, they allow the signals received by the antennas to be coded into a considerably reduced number of aggregate waveforms. By applying suitable decoding techniques, the signals received by each antenna can be estimated in order to apply imaging algorithms. These components offer the advantage of greatly reducing the number of RF channels while keeping the same number of antennas and allowing simultaneous acquisition of the signals. Laboratory demonstrators were carried out in S-band to demonstrate the feasibility of the proposed alternatives. Finally, the results obtained were the subject of a patent application and a prototype of a millimeter-wave radiometric imager is being developed in the framework of the ANR-PIXEL project.
|
7 |
Auslegung von Mikrowellen-Thermoprozess-Anlagen unter Nutzung von hochfrequenz-technischen Prinzipien: am Beispiel eines Entbinderungsofens für keramische GrünkörperReichmann, Markus 18 April 2011 (has links)
Um der Mikrowellenerwärmung als Single- oder Hybridanwendung im industriellen Ofenbau ein weiteres Anwendungsspektrum zu eröffnen, wird dem Anlagenkonstrukteur im Rahmen dieser Arbeit eine Aufstellung von Entwicklungsprioritäten und Konstruktionshinweisen übergeben. Für eine energieeffiziente Ausnutzung des technologischen Potenzials wird hierbei nicht - wie in der Vergangenheit - die Feldstärkenverteilung, sondern das Reflexionsverhalten in den Vordergrund gestellt.
Durch die Entwicklung und den Aufbau eines Messplatzes zur Bestimmung temperaturspezifischer Dielektrizitätsparameter konnte die Realitätsnähe der Simulation für die anwendungsorientierte Applikatorentwicklung gesteigert werden.
Die Anwendbarkeit der Auslegungskriterien wird im Rahmen der Projektierung und des Aufbaus einer Beispielanlage zur Entbinderung von keramischen Grünkörpern und bei der Entwicklung zahlreicher mikrowellenspezifischer Anlagenbauteile verifiziert.
|
Page generated in 0.0371 seconds