Spelling suggestions: "subject:"ene class"" "subject:"ene glass""
41 |
Computer aided diagnosis of epilepsy lesions based on multivariate and multimodality data analysis / Recherche de biomarqueurs par l’analyse multivariée d’images paramétriques multimodales pour le bilan non-invasif préchirurgical de l’épilepsie focale pharmaco-résistanteEl Azami, Meriem 23 September 2016 (has links)
Environ 150.000 personnes souffrent en France d'une épilepsie partielle réfractaire à tous les médicaments. La chirurgie, qui constitue aujourd’hui le meilleur recours thérapeutique nécessite un bilan préopératoire complexe. L'analyse de données d'imagerie telles que l’imagerie par résonance magnétique (IRM) anatomique et la tomographie d’émission de positons (TEP) au FDG (fluorodéoxyglucose) tend à prendre une place croissante dans ce protocole, et pourrait à terme limiter de recourir à l’électroencéphalographie intracérébrale (SEEG), procédure très invasive mais qui constitue encore la technique de référence. Pour assister les cliniciens dans leur tâche diagnostique, nous avons développé un système d'aide au diagnostic (CAD) reposant sur l'analyse multivariée de données d'imagerie. Compte tenu de la difficulté relative à la constitution de bases de données annotées et équilibrées entre classes, notre première contribution a été de placer l'étude dans le cadre méthodologique de la détection du changement. L'algorithme du séparateur à vaste marge adapté à ce cadre là (OC-SVM) a été utilisé pour apprendre, à partir de cartes multi-paramétriques extraites d'IRM T1 de sujets normaux, un modèle prédictif caractérisant la normalité à l'échelle du voxel. Le modèle permet ensuite de faire ressortir, dans les images de patients, les zones cérébrales suspectes s'écartant de cette normalité. Les performances du système ont été évaluées sur des lésions simulées ainsi que sur une base de données de patients. Trois extensions ont ensuite été proposées. D'abord un nouveau schéma de détection plus robuste à la présence de bruit d'étiquetage dans la base de données d'apprentissage. Ensuite, une stratégie de fusion optimale permettant la combinaison de plusieurs classifieurs OC-SVM associés chacun à une séquence IRM. Enfin, une généralisation de l'algorithme de détection d'anomalies permettant la conversion de la sortie du CAD en probabilité, offrant ainsi une meilleure interprétation de la sortie du système et son intégration dans le bilan pré-opératoire global. / One third of patients suffering from epilepsy are resistant to medication. For these patients, surgical removal of the epileptogenic zone offers the possibility of a cure. Surgery success relies heavily on the accurate localization of the epileptogenic zone. The analysis of neuroimaging data such as magnetic resonance imaging (MRI) and positron emission tomography (PET) is increasingly used in the pre-surgical work-up of patients and may offer an alternative to the invasive reference of Stereo-electro-encephalo -graphy (SEEG) monitoring. To assist clinicians in screening these lesions, we developed a computer aided diagnosis system (CAD) based on a multivariate data analysis approach. Our first contribution was to formulate the problem of epileptogenic lesion detection as an outlier detection problem. The main motivation for this formulation was to avoid the dependence on labelled data and the class imbalance inherent to this detection task. The proposed system builds upon the one class support vector machines (OC-SVM) classifier. OC-SVM was trained using features extracted from MRI scans of healthy control subjects, allowing a voxelwise assessment of the deviation of a test subject pattern from the learned patterns. System performance was evaluated using realistic simulations of challenging detection tasks as well as clinical data of patients with intractable epilepsy. The outlier detection framework was further extended to take into account the specificities of neuroimaging data and the detection task at hand. We first proposed a reformulation of the support vector data description (SVDD) method to deal with the presence of uncertain observations in the training data. Second, to handle the multi-parametric nature of neuroimaging data, we proposed an optimal fusion approach for combining multiple base one-class classifiers. Finally, to help with score interpretation, threshold selection and score combination, we proposed to transform the score outputs of the outlier detection algorithm into well calibrated probabilities.
|
42 |
Classification Automatique d'Images, Application à l'Imagerie du Poumon ProfondDesir, Chesner 10 July 2013 (has links) (PDF)
Cette thèse porte sur la classification automatique d'images, appliquée aux images acquises par alvéoscopie, une nouvelle technique d'imagerie du poumon profond. L'objectif est la conception et le développement d'un système d'aide au diagnostic permettant d'aider le praticien à analyser ces images jamais vues auparavant. Nous avons élaboré, au travers de deux contributions, des méthodes performantes, génériques et robustes permettant de classer de façon satisfaisante les images de patients sains et pathologiques. Nous avons proposé un premier système complet de classification basé à la fois sur une caractérisation locale et riche du contenu des images, une approche de classification par méthodes d'ensemble d'arbres aléatoires et un mécanisme de pilotage du rejet de décision, fournissant à l'expert médical un moyen de renforcer la fiabilité du système. Face à la complexité des images alvéoscopiques et la difficulté de caractériser les cas pathologiques, contrairement aux cas sains, nous nous sommes orientés vers la classification one-class qui permet d'apprendre à partir des seules données des cas sains. Nous avons alors proposé une approche one-class tirant partie des mécanismes de combinaison et d'injection d'aléatoire des méthodes d'ensemble d'arbres de décision pour répondre aux difficultés rencontrées dans les approches standards, notamment la malédiction de la dimension. Les résultats obtenus montrent que notre méthode est performante, robuste à la dimension, compétitive et même meilleure comparée aux méthodes de l'état de l'art sur une grande variété de bases publiques. Elle s'est notamment avérée pertinente pour notre problématique médicale.
|
43 |
Privacy preserving software engineering for data driven developmentTongay, Karan Naresh 14 December 2020 (has links)
The exponential rise in the generation of data has introduced many new areas of research including data science, data engineering, machine learning, artificial in- telligence to name a few. It has become important for any industry or organization to precisely understand and analyze the data in order to extract value out of the data. The value of the data can only be realized when it is put into practice in the real world and the most common approach to do this in the technology industry is through software engineering. This brings into picture the area of privacy oriented software engineering and thus there is a rise of data protection regulation acts such as GDPR (General Data Protection Regulation), PDPA (Personal Data Protection Act), etc. Many organizations, governments and companies who have accumulated huge amounts of data over time may conveniently use the data for increasing business value but at the same time the privacy aspects associated with the sensitivity of data especially in terms of personal information of the people can easily be circumvented while designing a software engineering model for these types of applications. Even before the software engineering phase for any data processing application, often times there can be one or many data sharing agreements or privacy policies in place. Every organization may have their own way of maintaining data privacy practices for data driven development. There is a need to generalize or categorize their approaches into tactics which could be referred by other practitioners who are trying to integrate data privacy practices into their development. This qualitative study provides an understanding of various approaches and tactics that are being practised within the industry for privacy preserving data science in software engineering, and discusses a tool for data usage monitoring to identify unethical data access. Finally, we studied strategies for secure data publishing and conducted experiments using sample data to demonstrate how these techniques can be helpful for securing private data before publishing. / Graduate
|
Page generated in 0.0337 seconds