• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SIRAH : sistema de reconhecimento de atividades humanas e avaliação do equilibrio postural /

Durango, Melisa de Jesus Barrera January 2017 (has links)
Orientador: Alexandre César Rodrigues da Silva / Resumo: O reconhecimento de atividades humanas abrange diversas técnicas de classificação que permitem identificar padrões específicos do comportamento humano no momento da ocorrência. A identificação é realizada analisando dados gerados por diversos sensores corporais, entre os quais destaca-se o acelerômetro, pois responde tanto à frequência como à intensidade dos movimentos. A identificação de atividades é uma área bastante explorada. Porém, existem desafios que necessitam ser superados, podendo-se mencionar a necessidade de sistemas leves, de fácil uso e aceitação por parte dos usuários e que cumpram com requerimentos de consumo de energia e de processamento de grandes quantidades de dados. Neste trabalho apresenta-se o desenvolvimento do Sistema de Reconhecimento de atividades Humanas e Avaliação do Equilíbrio Postural, denominado SIRAH. O sistema está baseado no uso de um acelerômetro localizado na cintura do usuário. As duas fases do reconhecimento de atividades são apresentadas, fase Offline e fase Online. A fase Offline trata do treinamento de uma rede neural artificial do tipo perceptron de três camadas. No treinamento foram avaliados três estudos de caso com conjuntos de atributos diferentes, visando medir o desempenho do classificador na diferenciação de 3 posturas e 4 atividades. No primeiro caso o treinamento foi realizado com 15 atributos, gerados no domínio do tempo, com os que a rede neural artificial alcançou uma precisão de 94,40%. No segundo caso foram gerados 34 ... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor

Page generated in 0.1289 seconds