Spelling suggestions: "subject:"anline large margin training"" "subject:"bnline large margin training""
1 |
Grapheme-to-phoneme conversion and its application to transliterationJiampojamarn, Sittichai 06 1900 (has links)
Grapheme-to-phoneme conversion (G2P) is the task of converting a word, represented by a sequence of graphemes, to its pronunciation, represented by a sequence of phonemes. The G2P task plays a crucial role in speech synthesis systems, and is an important part of other applications, including spelling correction and speech-to-speech machine translation. G2P conversion is a complex task, for which a number of diverse solutions have been proposed. In general, the problem is challenging because the source string does not unambiguously specify the target representation. In addition, the training data include only example word
pairs without the structural information of subword alignments.
In this thesis, I introduce several novel approaches for G2P conversion. My contributions can be categorized into (1) new alignment models and (2) new output generation models. With respect to alignment models, I present techniques including many-to-many alignment, phonetic-based alignment, alignment by integer linear programing and alignment-by-aggregation. Many-to-many alignment is designed to replace the one-to-one
alignment that has been used almost exclusively in the past. The new many-to-many alignments are more precise and accurate in expressing grapheme-phoneme relationships. The other proposed alignment approaches attempt to advance the training method beyond the use of Expectation-Maximization (EM). With respect to generation models, I first describe a framework for integrating many-to-many alignments and language models for grapheme classification. I then propose joint processing for G2P using online discriminative training. I integrate a generative joint n-gram model into the discriminative framework. Finally, I apply the proposed G2P systems to name transliteration generation and mining tasks. Experiments show that the proposed system achieves state-of-the-art performance in both the G2P and name transliteration tasks.
|
2 |
Grapheme-to-phoneme conversion and its application to transliterationJiampojamarn, Sittichai Unknown Date
No description available.
|
Page generated in 0.1095 seconds