• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 16
  • 5
  • Tagged with
  • 41
  • 21
  • 17
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Development of transgenic Ambystoma mexicanum (axolotl) to study cell fate during development and regeneration

Sobkow, Lidia 18 April 2006 (has links) (PDF)
The establishment of transgenesisi in axolotls is crucial for studying development and regeneration, as it would allow for long-term fate tracing as well as gene expression analysis, therefore we were interested in both obtaining animals expresing the transgene with little mosaicism in F0 generation and transgenesis. We demonstrate here that plasmid injection into one cell stage axolotl embryo generates transgenic animals that display germline transmission of a transgene. However, the efficiency of simple plasmid injection is very low, expression of the transgene is mosaic and seems to be promoter dependant. We have tested several methods of transgenesis developed in other systems. First we used Adeno-Associated Viral Terminal Repeats inserted into the injected construct to enhance the expression level of the transgene and reduce mosaicism. However, in the axolotl system we do not observe the enhancement of expression. Moreover, the expression appeared to be transient and disappeared after two months. Further, we tested the effect of the inclusion of ISceI meganuclease in the injections, succesful transgenesis method in the medaka system. It resulted in a higher percentage of F0 animals displaying strong , stable expression throughout the body. This represents the first demonstration in the axolotl of germline transmission of the transgene. Using this technique we have generated a germline transgenic anima expressing GFP ubiquitously in all tissue examined. We have used this anima to study cell fate in the dirsal fin during development. We have discovered a contribution of somite cells to dorsal fin mesenchyme in the axolotl, which was previously assumed to derive solely from neural crest. We have also studied the role of blood during tail regeneration by transplanting the ventral blood-forming region from GFP+ embryos into unlabeled host. During tail regeneration, we do not observe GFP+ cells contributing to muscle or nerve, suggesting that during tail regeneration blood stem cells do not undergo significant plasticity. We are interested in characterization of pluripotency of blastema cells. Previously, it has been shown that neural progenitor cells form the spinal cord can transdifferentiate to muscle and other tissue types in the regenerating tail. To test if blastema cells have the potency of differentiating into a neural tissue , we transplanted GFP+ 4day blastema into an injured spinal cord. Our result shows that blastema cells don't seem to contribute to the regenerating spinal cord.
32

The function of PTK7 during Xenopus neural crest migration / Die Funktion von PTK7 in der Neuralleistenzellmigration in Xenopus laevis

Shnitsar, Iryna 14 December 2009 (has links)
No description available.
33

TGF-beta signaling at the cellular junctions

Dudu, Veronica 08 June 2005 (has links)
During cell communication, cells produce secreted signals termed morphogens, which traffic through the tissue until they are received by target, responding cells. Using the fruit fly Drosophila melanogaster as a model organism, I have studied transforming growth factor-beta (TGF-beta) signal from the secreting to the receiving cells in the developing wing epithelial cells and at the neuromuscular junctions. Cell culture studies have suggested that cells modulate morphogenetic signaling by expressing the receptors and secreting the ligand in spatially defined areas of the cell. Indeed, I have found that TGF-beta ligands, receptors and R-Smads show a polarized distribution both in the epithelial cells and at the synapses. My results indicate that the cellular junctions define a signaling domain within the plasma membrane, to which TGF-beta signaling machinery is targeted. In the context of epithelial cells, the junctions play a role in TGF-beta signaling regulation through their component beta-cat. A complex forms between beta-cat and the R-Smad Mad, but the mechanism by which beta-cat modulates signaling is not yet understood. At the synapse, the sub-cellular localization of TGF-beta pathway components indicates the occurrence of an anterograde signal. Moreover, my results suggest a scenario in which TGF-beta signaling is coupled with synaptic activity: quanta of growth factor, released upon neurostimulation together with neurotransmitter quanta, could modulate therefore the development and the function of the synapse.
34

Development of transgenic Ambystoma mexicanum (axolotl) to study cell fate during development and regeneration

Sobkow, Lidia 03 May 2006 (has links)
The establishment of transgenesisi in axolotls is crucial for studying development and regeneration, as it would allow for long-term fate tracing as well as gene expression analysis, therefore we were interested in both obtaining animals expresing the transgene with little mosaicism in F0 generation and transgenesis. We demonstrate here that plasmid injection into one cell stage axolotl embryo generates transgenic animals that display germline transmission of a transgene. However, the efficiency of simple plasmid injection is very low, expression of the transgene is mosaic and seems to be promoter dependant. We have tested several methods of transgenesis developed in other systems. First we used Adeno-Associated Viral Terminal Repeats inserted into the injected construct to enhance the expression level of the transgene and reduce mosaicism. However, in the axolotl system we do not observe the enhancement of expression. Moreover, the expression appeared to be transient and disappeared after two months. Further, we tested the effect of the inclusion of ISceI meganuclease in the injections, succesful transgenesis method in the medaka system. It resulted in a higher percentage of F0 animals displaying strong , stable expression throughout the body. This represents the first demonstration in the axolotl of germline transmission of the transgene. Using this technique we have generated a germline transgenic anima expressing GFP ubiquitously in all tissue examined. We have used this anima to study cell fate in the dirsal fin during development. We have discovered a contribution of somite cells to dorsal fin mesenchyme in the axolotl, which was previously assumed to derive solely from neural crest. We have also studied the role of blood during tail regeneration by transplanting the ventral blood-forming region from GFP+ embryos into unlabeled host. During tail regeneration, we do not observe GFP+ cells contributing to muscle or nerve, suggesting that during tail regeneration blood stem cells do not undergo significant plasticity. We are interested in characterization of pluripotency of blastema cells. Previously, it has been shown that neural progenitor cells form the spinal cord can transdifferentiate to muscle and other tissue types in the regenerating tail. To test if blastema cells have the potency of differentiating into a neural tissue , we transplanted GFP+ 4day blastema into an injured spinal cord. Our result shows that blastema cells don't seem to contribute to the regenerating spinal cord.
35

Funktionsanalyse der Entwicklungskontrollgene Irx2 und Mash1 in der Maus. / Functional analysis of Irx2 and Mash1, two murine transcription control genes.

Becker, May-Britt 25 April 2002 (has links)
No description available.
36

Regulation der Neurogenese durch bHLH-O-Proteine in Xenopus laevis / Regulation of Neurogenesis by bHLH-O-Proteins in Xenopus laevis

Sölter, Marion 18 January 2006 (has links)
No description available.
37

Identification and characterisation of novel zebrafish brain development mutants obtained by large-scale forward mutagenesis screening / Mutagenese von Zebrafischen und Identifizierung und Charakterisierung von neuen Mutanten mit Defekten in der frühen Gehirnentwicklung

Klisa, Christiane 14 December 2003 (has links) (PDF)
Developmental biology adresses how cells are organised into functional structures and eventually into a whole organism. It is crucial to understand the molecular basis for processes in development, by studying the expression and function of relevant genes and their relationship to each other. A gene function can be studied be creating loss-of-function situations, in which the change in developmental processes is examined in the absense of a functional gene product, or in gain-of-function studies, where a gene product is either intrinsically overproduced or ectopically upregulated. One approach for a loss-of-function situation is the creation of specific mutants in single genes, and the zebrafish (Danio rerio) has proven to be an excellent model organism for this purpose. In this thesis, I report on two forward genetic screens performed to find new mutants affecting brain development, in particular mutants defective in development and function of the midbrain-hindbrain boundary (MHB), an organiser region that patterns the adjacent brain regions of the midbrain and the hindbrain. In the first screen, I could identify 10 specific mutants based on morphology and the analysis of the expression patterns of lim1 and fgf8, genes functioning as early neuronal markers and as a patterning gene, respectively. Three of these mutants lacked an MHB, and by complementation studies, I identified these mutants as being defective in the spg locus. The second screen produced 35 new mutants by screening morphologically and with antibodies against acetylated Tubulin, which marks all axonal scaffolds, and anti-Opsin, which is a marker for photoreceptors in the pineal gland. According to their phenotype, I distributed the mutant lines into 4 phenotypic subgroups, of which the brain morphology group with 18 mutant lines was studied most intensively. In the last part of my thesis, I characterise one of these brain morphology mutants, broken heart. This mutant is defective in axonal outgrowth and locomotion, and shows a striking reduction of serotonergic neurons in the epiphysis and in the raphe nuclei in the hindbrain, structures involved in serotonin and melatonin production. Studies in other model organisms suggested a role of factors from the floor plate and the MHB in induction of the serotonergic neurons in the hindbrain, and using broken heart, I show that Fgf molecules such as Fgf4 and Fgf8 can restore partially the loss of serotonergic neurons in the mutant. I conclude that forward genetic screens are an invaluable tool to generate a pool of mutations in specific genes, which can be used to dissect complex processes in development such as brain development.
38

Rho GTPase family members in establishment of polarity in C. elegans embryos / Mitglieder der Rho GTPasen Familie in der Etablierung der Polarität in C. elegans Embryonen

Schonegg, Stephanie 10 January 2006 (has links) (PDF)
Cell polarity is required for asymmetric division, a mechanism to generate cell diversity by distributing fate determinants unequally to daughter cells. The establishment of polarity requires the evolutionarily conserved partitioning-defective (PAR) proteins as well as the actin cytoskeleton. In Caenorhabditis elegans one-cell embryos, the PAR proteins are segregated into an anterior (PAR-3, PAR-6) and a posterior (PAR-1, PAR-2) corticaldomain. The formation of PAR polarity correlates with anterior-posterior differences in the contractile activity of the cortex, known as "contractile polarity". It is thought that regulation of contractile polarity controls the establishment of PAR polarity, but detailed evidence to support this idea is lacking. To investigate how modulation of the actomyosin cytoskeleton affects polarity establishment, the acto-myosin cytoskeleton was perturbed by RNA-mediated interference (RNAi) of two Rho GTPases, CDC-42 and RHO-1. To examine how Rho GTPases are implemented in actin remodeling, it is important to analyze how their activity is controlled and how different activities affect polarity formation. The role of two putative Rho GTPase regulators, the Rho GTPase exchange factor (GEF) ECT-2 and the Rho GTPase activating protein (GAP) K09H11.3 were analyzed with respect to polarity formation. The formation of polarity was analyzed by using GFP-labeled proteins, and several different tracking methods were used to investigate the establishment of contractile and PAR polarity in more detail.This study demonstrates that both RHO-1 and CDC-42 are involved in polarity establishment in C. elegans embryos. But importantly, both act by different mechanisms. RHO-1 organizes the acto-myosin cytoskeleton into a contractile network, and therefore is essential for the formation of contractile polarity. The organization of the acto-myosin cytoskeleton is critical to ensure proper PAR protein distribution. Furthermore, a balance of RHO-1 activity by the GEF ECT-2 and the GAP K09H11.3 appears to be important for cortical contractility, for PAR protein domain size and for mutual exclusion of the PAR proteins. Although CDC-42 was shown to be a universal regulator of the actin cytoskeleton, CDC-42 acts downstream of contractile polarity. CDC-42 is required for linking PAR-6 to the cortex. In the absence of RHO-1 and ECT-2, PAR-6 and CDC-42 are not localized to the anterior cortex. This suggests that RHO-1, by organizing the actomyosin cytoskeleton into a contractile network, regulates the segregation of CDC-42 to the anterior cortex, and concomitantly PAR-6 localization. This study shows that the distribution of PAR is related to cortical activity and supports the model that the actin cytoskeleton plays an important role in polarity establishment.
39

Characterization of the Role of <i>aeneas</i> in Primordial Germ Cell Migration and Blastoderm Cellularization / Charakterisierung der Funktion von <i>aeneas</i> in der Migration Primordialer Keimzellen und der Zellularisierung des Blastoderms

Graf, Roland Jan 22 June 2007 (has links)
No description available.
40

Rho GTPase family members in establishment of polarity in C. elegans embryos

Schonegg, Stephanie 29 November 2005 (has links)
Cell polarity is required for asymmetric division, a mechanism to generate cell diversity by distributing fate determinants unequally to daughter cells. The establishment of polarity requires the evolutionarily conserved partitioning-defective (PAR) proteins as well as the actin cytoskeleton. In Caenorhabditis elegans one-cell embryos, the PAR proteins are segregated into an anterior (PAR-3, PAR-6) and a posterior (PAR-1, PAR-2) corticaldomain. The formation of PAR polarity correlates with anterior-posterior differences in the contractile activity of the cortex, known as &amp;quot;contractile polarity&amp;quot;. It is thought that regulation of contractile polarity controls the establishment of PAR polarity, but detailed evidence to support this idea is lacking. To investigate how modulation of the actomyosin cytoskeleton affects polarity establishment, the acto-myosin cytoskeleton was perturbed by RNA-mediated interference (RNAi) of two Rho GTPases, CDC-42 and RHO-1. To examine how Rho GTPases are implemented in actin remodeling, it is important to analyze how their activity is controlled and how different activities affect polarity formation. The role of two putative Rho GTPase regulators, the Rho GTPase exchange factor (GEF) ECT-2 and the Rho GTPase activating protein (GAP) K09H11.3 were analyzed with respect to polarity formation. The formation of polarity was analyzed by using GFP-labeled proteins, and several different tracking methods were used to investigate the establishment of contractile and PAR polarity in more detail.This study demonstrates that both RHO-1 and CDC-42 are involved in polarity establishment in C. elegans embryos. But importantly, both act by different mechanisms. RHO-1 organizes the acto-myosin cytoskeleton into a contractile network, and therefore is essential for the formation of contractile polarity. The organization of the acto-myosin cytoskeleton is critical to ensure proper PAR protein distribution. Furthermore, a balance of RHO-1 activity by the GEF ECT-2 and the GAP K09H11.3 appears to be important for cortical contractility, for PAR protein domain size and for mutual exclusion of the PAR proteins. Although CDC-42 was shown to be a universal regulator of the actin cytoskeleton, CDC-42 acts downstream of contractile polarity. CDC-42 is required for linking PAR-6 to the cortex. In the absence of RHO-1 and ECT-2, PAR-6 and CDC-42 are not localized to the anterior cortex. This suggests that RHO-1, by organizing the actomyosin cytoskeleton into a contractile network, regulates the segregation of CDC-42 to the anterior cortex, and concomitantly PAR-6 localization. This study shows that the distribution of PAR is related to cortical activity and supports the model that the actin cytoskeleton plays an important role in polarity establishment.

Page generated in 0.0392 seconds