Spelling suggestions: "subject:"opérateur dde schrödinger magnétique"" "subject:"opérateur dde chrödinger magnétique""
1 |
Méthodes spectrales et théorie des cristaux liquidesRaymond, Nicolas 12 October 2009 (has links) (PDF)
Cette thèse est consacrée à deux types de problèmes.<br />Le premier et principal aspect de ce travail concerne l'analyse semi-classique de la plus petite valeur propre $\la_1(B,\A)$ de la réalisation de Neumann de l'opérateur de Schrödinger magnétique $(i\nabla+B\A)^2$ dans le cas où le champ magnétique $\bbeta=\nabla\times\A$ n'est pas uniforme. Plus précisément, en dimension 2, nous établissons un développement asymptotique à deux termes de $\la_1(B,\A)$ lorsque $B$ tend vers l'infini et démontrons simultanément des résultats de localisation pour les premières fonctions propres correspondantes ; pour ce qui est du problème en dimension 3, nous étudions d'une part des estimations uniformes pour une famille de champs magnétiques d'intensité constante (en vue de l'application à une famille spéciale apparaissant à l'occasion de la théorie des cristaux liquides) et d'autre part nous nous plaçons dans des hypothèses génériques sur le champ magnétique et prouvons une majoration qui laisse conjecturer l'expression des deuxième et troisième termes du développement asymptotique.<br />Le deuxième aspect de cette thèse est l'étude de la transition de phase en théorie des cristaux liquides. Nous mettons en évidence une température critique pour la fonctionnelle de Landau-de Gennes qui permet de déterminer, lorsque certains coefficients de la fonctionnelle appelés constantes d'élasticité explosent, la phase dans laquelle se trouve le cristal liquide (nématique ou smectique). Par ailleurs, nous sommes amenés à introduire une nouvelle fonctionnelle (en imposant une condition de Dirichlet non homogène) en vue d'obtenir des informations plus quantitatives.
|
2 |
Résonances et diffusion pour les opérateurs de Dirac et de Schrödinger magnétique / Resonances and scattering for Dirac and magnetic Schrödinger operatorsKhochman, Abdallah 02 December 2008 (has links)
Le sujet de cette thèse est l’étude de certaines équations de physique mathématique. Dans un premier temps, on étudie les résonances et la fonction de décalage spectral pour les opérateurs de Dirac semi-classique et de Schrödinger magnétique en dimension 3. On dé?nit les résonances comme des valeurs propres d’un opérateur non-autoadjoint obtenu par distortion complexe. Pour l’opérateur de Dirac, on majore le nombre de résonances par O(h-3) où h ? 0 est le paramètre semi-classique. Dans le cas de Schrödinger magnétique, l’opérateur de référence génère des valeurs propres de multipli- cité in?nie plongées dans le spectre continu. Dans une couronne centrée en une de ces valeurs propres et de rayons (r, 2r), on établit une borne supérieure, quand r ? 0, du nombre de résonances. Une approximation de type Breit-Wigner de la dérivée de la fonction de décalage spectral en fonction des résonances et une formule de trace locale sont obtenues pour ces deux opérateurs. De plus, on prouve une formule asymptotique de Weyl pour la fonction de décalage spectral pour l’opérateur de Dirac avec un potentiel électro-magnétique. Dans un deuxième temps, on s’intéresse à l’opérateur de Dirac semi-classique en dimension 1 avec un potentiel ayant des limites constantes mais pas nécessairement les mêmes à ±8. En utilisant la méthode BKW complexe, on construit des solutions analytiques de l’opérateur de Dirac. On étudie la théorie de la di?usion en fonction des solutions entrantes et sortantes. On obtient une asymptotique semi-classique de la matrice de di?usion dans di?érents cas, notamment dans le cas où le paradoxe de Klein apparaît. Le calcul des valeurs propres et des résonances est aussi traité pour l’opérateur de Dirac semi-classique unidimensionnel. / In this thesis, we consider equations of mathematical physics. First, we study the reso- nances and the spectral shift function for the semi-classical Dirac operator and the magnetic Schrö- dinger operator in three dimensions. We de?ne the resonances as the eigenvalues of a non-selfadjoint operator obtained by complex distortion. For the Dirac operator, we establish an upper bound O(h-3), as the semi-classical parameter h tends to 0, for the number of resonances. In the Schrödinger magne- tic case, the reference operator has in?nitely many eigenvalues of in?nite multiplicity embedded in its continuous spectrum. In a ring centered at one of this eigenvalues with radiuses (r, 2r), we establish an upper bound, as r tends to 0, of the number of the resonances. A Breit-Wigner approximation formula for the derivative of the spectral shift function related to the resonances and a local trace formula are obtained for the considered operators. Moreover, we prove a Weyl-type asymptotic of the SSF for the Dirac operator with an electro-magnetic potential. Secondly, we consider the semi-classical Dirac ope- rator on R with potential having constant limits, not necessarily the same at ±8. Using the complex WKB method, we construct analytic solutions for the Dirac operator. We study the scattering theory in terms of incoming and outgoing solutions. We obtain an asymptotic expansion, with respect to the semi-classical parameter h, of the scattering matrix in di?erent cases, in particular, in the case when the Klein paradox occurs. Quantization conditions for the resonances and for the eigenvalues of the one-dimensional Dirac operator are also obtained.
|
3 |
Le modèle de Ginzburg-Landau avec champ magnétique variable / The Ginzburg-Landau model with a variable magnetic fieldAttar, Kamel 16 June 2015 (has links)
La thèse de doctorat comporte trois parties rédigées en anglais. Les deux premières parties correspondent principalement à l'étude de l'énergie de l'état fondamental. La dernière partie est consacrée à l'analyse de l'effet de pinning dans la supraconductivité.Dans une première partie de cette thèse, nous considérons la fonctionnelle de Ginzburg -Landau avec un champ magnétique variable appliqué dans un domaine borné et régulier de dimension 2. Nous déterminons le comportement asymptotique du paramètre d'ordre dans le régime o\`u le paramètre de Ginzburg-Landau et le champ magnétique sont grands et de même ordre. Comme conséquence, nous montrons que le paramètre d'ordre est localisé asymptotiquement dans la région où le profil du champ magnétique appliqué est petit.Dans une autre partie, nous considérons la fonctionnelle de Ginzburg -Landau avec un champ magnétique variable appliqué dans un domaine borné et régulier de dimension 2. Le profil du champ magnétique appliqué varie régulièrement et peut s'annuler exactement à l'ordre 1 le long d'une courbe. En supposant que la l'intensité du champ magnétique appliqué varie entre deux échelles caractéristiques, et que le paramètre de Ginzburg- Landau tend vers l'infini, nous déterminons une formule asymptotique précise pour minimiser l'énergie et montrer que les minimiseurs de l'énergie ont des vortex. Nous mettons en évidence que la présence d'un champ magnétique variable implique que la distribution de la vorticité dans l'échantillon n'est pas uniforme.Dans la dernière partie, nous étudions l'énergie de Ginzburg-Landau d'un supraconducteur avec un champ magnétique variable et un terme de pinning dans un domaine borné et régulier de dimension 2. En supposant que le paramètre de Ginzburg-Landau et l'intensité du champ magnétique sont grands et de même ordre, nous déterminons une formule asymptotique précise pour l'énergie. De plus, nous discutons l'existence des solutions non-triviales et déterminons le comportement asymptotique du troisième champ critique de la supraconductivité. / The PHD thesis has three parts, the first and the second part correpond mainly to study the groundstate energy, the last one being devoted to the analysis of the pinning effect in superconductivity.In a first part of this thesis, we consider the Ginzburg-Landau functional with a variable applied magnetic field in a bounded and smooth two-dimensional domain. We determine an accurate asymptotic formula for the minimizing energy when the Ginzburg-Landau parameter and the magnetic field are large and of the same order. As a consequence, it is shown how bulk superconductivity decreases in average as the applied magnetic field increases.In another part, we consider the Ginzburg-Landau functional with a variable applied magnetic field in a bounded and smooth two-dimensional domain. The profile of the applied magnetic field varies smoothly and is allowed to vanish non-degenerately along a curve. Assuming that the strength of the applied magnetic field varies between two characteristic scales, and that the Ginzburg-Landau parameter tends to , we determine an accurate asymptotic formula for the minimizing energy and show that the energy minimizers have vortices. The new aspect in the presence of variable magnetic field is that the distribution of vortices in the sample is not uniform.In the final part, we study the Ginzburg-Landau energy of a superconductor with a variable magnetic field and a pinning term in a bounded and smooth two-dimensional domain . Supposing that the Ginzburg-Landau parameter and the intensity of magnetic field are large and of the same order, we determine an accurate asymptotic formula for the minimizing energy. Also, we discuss the existence of non-trivial solutions and prove an asymptotics of the third critical field.
|
Page generated in 0.1202 seconds