Spelling suggestions: "subject:"openchannel"" "subject:"penghuchannel""
11 |
Parshall Flume Staff Gauge Location and Entrance Wingwall Discharge Calibration CorrectionsHeiner, Bryan J. 01 December 2009 (has links)
The Utah Water Research Laboratory, in conjunction with the State of Utah, initiated a study to determine the accuracy of a wide variety of flow measurement devices in Utah. The project selected 70 sites with flow measurement devices throughout the state. During the assessment each device had its physical condition and flow measurement accuracy documented.
Although a wide variety of flow measurement devices were tested, the majority were Parshall flumes. Many of the assessed Parshall flumes were not measuring flow to the specified ±5 percent design accuracy. Problems in flow measurement were due to issues with the staff gauge location and incorrect entrance geometry. Laboratory tests were conducted at the Utah Water Research Laboratory in an attempt to provide accurate flow measurement from flumes with these issues. The tests simulated incorrect locations for measuring upstream head with different entrance geometries on a 2-ft-wide Parshall flume.
The flume was tested with three different entrance wingwall configurations, eighteen stilling wells, and two point gauges, allowing water surface profiles to be collected throughout the flume. Corrections for incorrect head measurement locations and entrance geometries were created.
The objective of this thesis is to provide water users and regulators with the information necessary to help improve open-channel flow measurement accuracies. An overview of design accuracies and flow measurement devices is given. In addition, a method to correct for incorrect head readings in Parshall flumes, a widely used flow measurement device in Utah, is presented. It is expected that this information will help water users and regulators monitor their water with the understanding necessary to ensure that water is more accurately measured.
|
12 |
Tailings beach slope predictionFitton, Timothy, tfitton@hotmail.com January 2007 (has links)
Tailings (mining waste) disposal is a significant consideration for the mining industry, with the majority of the ore processed in most mining operations ending up as tailings. This creates large volumes of tailings, which must be handled and stored responsibly to avoid potential environmental catastrophes. The most common form of tailings storage facility is the impoundment, where tailings are contained within a basin, with beaches forming around the perimeter of the impoundment and a pond standing in the middle. A relatively new method of tailings storage is to create a 'stack', whereby the tailings solids form a large heap, with the discharge of tailings slurry from the apex of the heap. It is of significant value for mine operators and tailings engineers to be able to predict the shape of the beach that forms in either of these disposal scenarios. The key to being able to do this relies on a method of prediction of the beach slope. The aim of this work is to develop a method of tailings beach slope prediction for tailings slurries that are sub-aerially discharged from a pipe. In this thesis a literature review is undertaken, investigating existing methods for the prediction of tailings beach slopes. These methods are validated against relevant industrial and experimental data. Two separate phases of experimental work have taken place in an effort to investigate tailings deposition behaviour, one at mine sites and the other in a laboratory on a small scale. Three new tailings beach slope prediction models are presented; a simple empirical model enabling quick approximate predictions; an a priori tailings beach slope prediction model based on existing theories of open channel flow, sediment transport and rheology, which is more powerful due to the greater degree of theory in its foundation; and a new semi-empirical model that shares some of the theoretical aspects of the a priori model but offers better predictions due to its empirical calibration to the experimental data. The experimental results, along with 3 other independently collected sets of relevant industrial and experimental data, are used to validate the beach slope prediction models found in the literature, as well as the new beach slope models presented in this thesis. Statistical evaluation of the performance of all of these models is presented to enable comparison. Finally, a new beach shape model is presented for the three dimensional geometric forecasting of the beach surface of a tailings stack. Historic tailings discharge data is run through the beach shape model, and the shapes predicted by the model are compared with aerial survey data of a real tailings stack for validation of the shape model. This work not only presents a new method of tailings stack shape prediction, but also a plausible theory for explaining the concavity of tailings beaches. The stack shape model also has the potential to be developed further for the three dimensional modelling of tailings beaches formed in other types of storage facilities, such as impoundments or valleys.
|
13 |
Scalar dispersion in turbulent open channel flows over smooth and rough bedsChen, Zhuo 14 August 2012 (has links)
Study of passive dispersion of a neutral scalar in turbulentflows is highly important due
to its numerous applications in the areas of turbulent flow visualization, turbulent heat
transfer and transport of pollutants and other substances in the environment. Over the past
few decades, many analytical, numerical, and experimental studies have been conducted
on this topic to obtain a better understanding of the physical process. In the present work,
Large Eddy Simulations (LES) of scalar dispersion in turbulent flow over smooth and rough
channels is conducted to contribute to the further understanding of the relation between the
turbulent velocity field and the concentration field.
The LES results from the present work showed good agreement with a recently com-pleted experimental study(Rahman and Webster [2005]). An in-depth comparison of in-stantaneous concentration and velocity fields revealed thecorrelation between scalar dis-persion and coherent structures of the turbulent flow. Also,a three dimensional visual-ization of concentration iso-surfaces at different instants provided a good picture of the
concentration structures transported as a result of hairpin vortices of turbulent flow, which
is quite difficult to accomplish using experimental studies.
|
14 |
Fundamental Characteristics of Fluidable Material Dam Break Flow with Finite Extent and Its Application / 流動性材料を用いた有限領域のダム破壊流れの基本特性とその応用に関する研究Puay, How Tion 23 March 2010 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第15344号 / 工博第3223号 / 新制||工||1485(附属図書館) / 27822 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 細田 尚, 教授 後藤 仁志, 准教授 米山 望 / 学位規則第4条第1項該当
|
15 |
Flood Capacity Improvement of San Jose Creek Channel Using HEC-RASMowinckel, Erland Kragh 01 June 2011 (has links)
The Santa Ynez Mountains of Santa Barbara County, California, have seen many major storm events during the past century. San Jose Creek, which runs out of these mountains, through the town of Goleta, and into the Pacific Ocean, has experienced several intense flood events as a result. The lower portion of the creek was diverted in 1960 to alleviate flooding through Old Town Goleta. However, flooding still occurred in the storms of 1995 and 1998. This study incorporates a hydraulic analysis component of a project aimed at re-designing this diverted portion of the channel. It presents an analysis of modifications to this reach in order to improve its capacity and reduce flooding during a 100-year event. As one of the most prominent software for hydraulic modeling for steady and unsteady state open channel flow, HEC-RAS is used to analyze multiple variations in channel geometry and combinations of lining materials. Of these modifications, the best configuration is suggested.
|
16 |
The Role of Turbulence on the Entrainment of a Single Sphere and the Effects of Roughness on Fluid-Solid InteractionBalakrishnan, Mahalingam III 01 October 1997 (has links)
Incipient motion criterion in sediment transport is very important, as it defines the flow condition that initiates sediment motion, and is also frequently employed in models to predict the sediment transport at higher flow conditions as well. In turbulent flows, even a reasonably accurate definition of incipient motion condition becomes very difficult due to the random nature of the turbulent process, which is responsible for sediment motion under incipient conditions. This work investigates two aspects, both of which apply to incipient sediment transport conditions. The first one deals with the role of turbulence in initiating sediment motion. The second part deals with the nature of sediment-fluid interaction for more general and complex flows where the number of sediment particles that form the rough surface is varied.
The first part of this work that investigates the role of turbulence in initiating sediment motion, uses a video camera to simultaneously monitor and record the sediment (glass ball) motion and corresponding fluid velocity events measured by a three-component laser Doppler Velocimeter (LDV). The results of the single ball experiment revealed that the number of LDV flow measurements increase dramatically (more than four folds) just prior to the ball motion. The fluid mean velocity and its root-mean-square (rms) values also are significantly higher than the values that correspond to the flow conditions that yield no ball motion.
The second part of the work, investigation of the fluid-sediment interaction, includes five tests with varying number of sediment particles. In order to understand the nature and extent of fluid-solid interaction, velocity profile measurements using the 3-D laser system were carried out at three locations for each of these five cases. Plots of mean velocities, rms quantities located the universal layer at about 1.5 ball diameters above the porous bed. However, at higher sediment particle concentrations, this distance reduced and the beginning of the universal layer approached the top of the porous bed. / Ph. D.
|
17 |
The Design of Compound Critical Sections for open Channel Flow MeasuresurementSmith, R. L. 05 1900 (has links)
<p> Weirs of the conventional shape are amenable to analysis based on an assumption of one-dimensional flow and a number of computational routines have been developed for this type of transition problem. When critical flow occurs in a highly non-uniform section, a more sophisticated approach is necessary. </p> <p> In conjunction with laboratory tests on a typical compound control, a mathematical mode was formulated for the development of the stage-discharge relation. It is felt that this model will allow an accurate prediction for water quantity from fluctuating sources. </p> / Thesis / Master of Engineering (MEngr)
|
18 |
Free surface air entrainment and single-bubble movement in supercritical open-channel flowWei, W., Xu, W., Deng, J., Guo, Yakun 06 May 2020 (has links)
Yes / There has been little study on the microscopic bubble entrainment and diffusion process on the high-speed self-aerated flows although the problem under investigation is theoretically important and has important engineering application. This study presents an experimental investigation on visual processes of free surface air entrainment and single bubble diffusion in supercritical open channel flows. The typical surface deformation, single air bubble rising and penetration are recorded using a high-speed camera system. Results show that for a single bubble formation process, surface entrapment development and bubble entrainment through a deformation evolution underneath the free surface are the two main features. The shape variation of local surface deformation with time follows an identical power law for different bubble size generations. The entrained bubble size depends on both size scale and shape of entrapped free surface. As the single bubble moves downstream, its longitudinal velocity is approximately the same as that of water flow surrounded it, while its vertical velocity for rising and penetration increases with the increase of the water flow velocity. An empirical-linear relationship for the bubble rising and penetration velocity with water flow velocity is obtained. This study demonstrates that the microscopic bubble movement can improve the self-aeration prediction in the open channel flow and advance the knowledge of our understanding of the macroscopic and microscopic air–water properties in hydraulic engineering. / National Natural Science Foundation of China (Grant number 51609162), Sichuan Science and Technology Program (Grant number 2019JDTD0007) and the Open funding of the State Key Laboratory of Hydraulics and Mountain River Engineering of Sichuan University (Project No: Skhl1809).
|
19 |
Use of gene-expression programming to estimate Manning's roughness coefficient for a low flow streamChaplot, B., Peters, M., Birbal, P., Pu, Jaan H., Shafie, A. 15 February 2023 (has links)
Yes / Manning’s roughness coefficient (n) has been widely used to estimate flood discharges and flow depths in natural channels. Therefore, although extensive guidelines are available, the selection of the appropriate n value is of great importance to hydraulic engineers and hydrologists. Generally, the largest source of error in post-flood estimates is caused by the estimation of n values, particularly when there has been minimal field verification of flow resistance. This emphasizes the need to improve methods for evaluating the roughness coefficients. Trinidad and Tobago currently does not have any set method or standardised procedure that they use to determine the n value. Therefore, the objective of this study was to develop a soft computing model in the calculation of the roughness coefficient values using low flow discharge measurements for a stream. This study presents Gene-Expression Programming (GEP), as an improved approach to compute Manning’s Roughness Coefficient. The GEP model was found to be accurate, producing a coefficient of determination (R2) of 0.94 and Root Mean Square Error (RSME) of 0.0024.
|
20 |
VORTEX MODEL OF OPEN CHANNEL FLOWS WITH GRAVEL BEDSBelcher, Brian James 01 January 2009 (has links)
Turbulent structures are known to be important physical processes in gravel-bed rivers. A number of limitations exist that prohibit the advancement and prediction of turbulence structures for optimization of civil infrastructure, biological habitats and sediment transport in gravel-bed rivers. This includes measurement limitations that prohibit characterization of size and strength of turbulent structures in the riverine environment for different case studies as well as traditional numerical modeling limitations that prohibit modeling and prediction of turbulent structure for heterogeneous beds under high Reynolds number flows using the Navier-Stokes equations. While these limitations exist, researchers have developed various theories for the structure of turbulence in boundary layer flows including large eddies in gravel-bed rivers. While these theories have varied in details and applicable conditions, a common hypothesis has been a structural organization in the fluid which links eddies formed at the wall to coherent turbulent structures such as large eddies which may be observed vertically across the entire flow depth in an open channel. Recently physics has also seen the advancement of topological fluid mechanical ideas concerned with the study of vortex structures, braids, links and knots in velocity vector fields. In the present study the structural organization hypothesis is investigated with topological fluid mechanics and experimental results which are used to derive a vortex model for gravel-bed flows. Velocity field measurements in gravel-bed flow conditions in the laboratory were used to characterize temporal and spatial structures which may be attributed to vortex motions and reconnection phenomena. Turbulent velocity time series data were measured with ADV and decomposed using statistical decompositions to measure turbulent length scales. PIV was used to measure spatial velocity vector fields which were decomposed with filtering techniques for flow visualization. Under the specific conditions of a turbulent burst the fluid domain is organized as a braided flow of vortices connected by prime knot patterns of thin-cored flux tubes embedded on an abstract vortex surface itself having topology of a Klein bottle. This model explains observed streamline patterns in the vicinity of a strong turbulent burst in a gravel-bed river as a coherent structure in the turbulent velocity field.
|
Page generated in 0.0495 seconds