101 |
Detekce obličejů ve videu na GPU / Face Detection in Video on GPUTesař, Martin January 2012 (has links)
This work deals with task of face detection on graphic card. First part is the introduction to face detection methods focusing on detector proposed by Viola and Jones. Further, this work studies the possibilities of mapping detector's key parts on graphic card. Next part describes implementation details of designed application. The end of work include results and comparison with CPU approach. The last chapter summarizes the whole work and proposes future possibilities of development.
|
102 |
Fyzikální simulace na GPU / Physics Simulation on GPUJanošík, Ondřej January 2016 (has links)
This thesis addresses the issue of rigid body simulation and possibilities of paralellization using GPU. It describes the basics necessary for implementation of basic physics engine for blocks and technologies which can be used for acceleration. In my thesis, I describe approach which allowed me to gradually accellerate physics simulation using OpenCL. Each significant change is described in its own section and includes measurement results with short summary.
|
103 |
Obnova hesel v distribuovaném prostředí / Password Recovery in Distributed EnvironmentKos, Ondřej January 2016 (has links)
The goal of this thesis is to design and implement a framework allowing password recovery in a distributed environment. The research is therefore focused on analyzing the security of passwords, techniques used for attacks on them and also presents methods preventing attacks on passwords. Described is the Wrathion tool which is allowing password recovery using acceleration on graphic cards through the integration of OpenCL framework. Conducted is also an analysis of available environments providing means to run computing tasks on multiple devices, based on which the OpenMPI platform is chosen for extending Wrathion. Disclosed are various modifications and added components, and the entire system is also subjected to experiments aiming at the measuring of scalability and network traffic performance. The financial side of the use of Wrathion tool is also discussed in terms of its usability in cloud based distributed environment.
|
104 |
Paralelizace Goertzelova algoritmu / Parallel implementation of Goertzel algorithmSkulínek, Zdeněk January 2017 (has links)
Technical problems make impossible steadily increase processor's clock frequency. Their power are currently growing due to increasing number of cores. It brings need for new approaches in programming such parallel systems. This thesis shows how to use paralelism in digital signal processing. As an example, it will be presented here implementation of the Geortzel's algorithm using the processing power of the graphics chip.
|
105 |
Paralleles konturbasiertes Connected-Component-Labeling für 2D-Bilddaten mit OpenCL und CudaWenke, Henning 09 October 2015 (has links)
Connected-Component-Labeling (CCL) für 2D-Bilddaten ist ein bekanntes Problem im Bereich der Bildverarbeitung. Ziel ist es, zusammenhängende Pixelgruppen mit gleichen Eigenschaften zu erkennen und mit einem eindeutigen Label zu versehen.
Zur Lösung von CCL-Problemen für 2D-Bilddaten werden sowohl sequentielle als auch parallele Algorithmen untersucht. Unter den bekannten Algorithmen gibt es solche, die asymptotisch optimale Eigenschaften besitzen.
Speziell für den Bereich der Bildverarbeitung interessant sind außerdem auf Konturierung basierende Algorithmen. Die zusätzlich extrahierten Konturen können z.B. für die Buchstabenerkennung genutzt werden.
Seit der jüngeren Vergangenheit werden Grafikprozessoren (GPUs) mit großem Erfolg für allgemeines Computing eingesetzt. So existieren auch mehrere Implementationen von Connected-Component-Labeling-Algorithmen für GPUs, welche im Vergleich mit Varianten für CPUs oft deutlich schneller sind. Diese GPU-basierten Ansätze verarbeiten typischerweise das Pixelgitter direkt.
Im Rahmen der vorliegenden Arbeit werden mehrere neue parallele CCL-Algorithmen vorgeschlagen, welche auf Konturen basieren und sowohl für GPUs als auch für Multicore-CPUs geeignet sind. Diese werden experimentell mit Implementationen aus der Literatur unter Verwendung aktueller GPUs und CPUs verglichen. Dabei erreichen in vielen Fällen die vorgeschlagenen Techniken ein besseres Laufzeitverhalten.
Das ist auf GPUs insbesondere dann besonders deutlich, wenn sich die evaluierten Datensätze durch einen geringen Anteil von Konturen im Vergleich zur Fläche der Connected-Components auszeichnen.
|
106 |
Modernizing and Evaluating the Autotuning Framework of SkePU 3Nsralla, Basel January 2022 (has links)
Autotuning is a method which enables a program to automatically choose the most suitable parameters that optimizes it for a certain goal e.g. speed, cost, etc. In this work autotuning is implemented in the context of the SkePU framework, in order to choose the best backend (CUDA, CPU, OpenCL, Hybrid) that would optimize a skeleton execution in terms of performance. SkePU is a framework that provides different algorithmic skeletons with implementations for the different backends (OpenCL, CUDA, OpenMP, CPU). Skeletons are parameterised with a user-provided per-element function which will run in parallel. This thesis shows how the autotuning of SkePU’s automatic backend selection for skeleton calls is implemented with respect to all the different parameters that a SkePU skeleton could have. The autotuning in this thesis is built upon the sampling technique, which is implemented by applying different combinations of sizes for the vector and matrix parameters to eventually generate an execution plan, which will be used as a lookup table when running the skeleton on all different backends. The execution plan will estimate the best performing backend for the sample. This work finally evaluates the implementation by comparing the results of running the autotuning on the different SkePU programs, to running the same programs without the autotuning.
|
107 |
Hardware Accelerated Particle Filter for Lane Detection and Tracking in OpenCLMadduri, Nikhil January 2014 (has links)
A road lane detection and tracking algorithm is developed, especially tailored to run on high-performance heterogeneous hardware like GPUs and FPGAs in autonomous road vehicles. The algorithm was initially developed in C/C++ and was ported to OpenCL which supports computation on heterogeneous hardware.A novel road lane detection algorithm is proposed using random sampling of particles modeled as straight lines. Weights are assigned to these particles based on their location in the gradient image. To improve the computation efficiency of the lane detection algorithm, lane tracking is introduced in the form of a Particle Filter. Creation of the particles in lane detection step and prediction, measurement updates in lane tracking step are computed parellelly on GPU/FPGA using OpenCL code, while the rest of the code runs on a host CPU. The software was tested on two GPUs - NVIDIA GeForce GTX 660 Ti & NVIDIA GeForce GTX 285 and an FPGA - Altera Stratix-V, which gave a computational frame rate of up to 104 Hz, 79 Hz and 27 Hz respectively. The code was tested on video streams from five different datasets with different scenarios of varying lighting conditions on the road, strong shadows and the presence of light to moderate traffic and was found to be robust in all the situations for detecting a single lane. / <p>Validerat; 20140128 (global_studentproject_submitter)</p>
|
108 |
Implementation of a Power Efficient Synthetic Aperture Radar Back Projection Algorithm on FPGAs Using OpenCLFan, David 27 August 2015 (has links)
No description available.
|
109 |
OpenCL Based Digital Image Projection AccelerationBadalamenti, Bryan M. 27 August 2015 (has links)
No description available.
|
110 |
Automatic Code Generation for Stencil Computations on GPU ArchitecturesHolewinski, Justin A. 19 December 2012 (has links)
No description available.
|
Page generated in 0.0539 seconds