• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 71
  • 14
  • 10
  • 10
  • 7
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 222
  • 70
  • 53
  • 50
  • 45
  • 32
  • 26
  • 25
  • 24
  • 24
  • 20
  • 20
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

3D Augmented Reality Mobile Application Prototype for Visual Planning Support / Mobil 3D Augmented Reality  Applikationsprototyp för Visuellt Planeringsstöd Godkänd från AnnMari och mig!

Fombuena Valero, Arnau January 2011 (has links)
The aim of this thesis is to implement a prototype of a 3D Augmented Reality mobile application. Using 3D is becoming more and more common for professionals as well as users. A good example of that is Google Earth and its 3D view. Implementing a mobile application that takes advantage of 3D and Augmented Reality may be very useful for planning new constructions in both urban and non-urban areas allowing to visualize how the construction will be in the future and how it will interact with its surrounding environment. There is a great potential for such kind of applications. An example could be the modification of a certain area of a city; allowing the inhabitants of that city to preview the project and, hopefully, avoiding unnecessary conflicts related to that project. In non-urban areas this application is also very useful for helping decision making by visualizing, on site, how the project will be and its impact on the environment. In order to preview a future construction there is the need to have a 3D model. Therefore, a 3D format for that model is necessary. Since COLLADA is a 3D standard interexchange format it is used in this thesis. Together with COLLADA, the computer graphics imagery and gaming technology called OpenGL ES 2.0 is used. Using COLLADA and OpenGL ES 2.0 combined with the properties of the views’ layers, the camera input, the sensors in the mobile device and the positioning technologies permit obtaining successful results displaying a 3D object in an Augmented Reality mobile prototype application. Interface elements are implemented as well in order to bring basic usability tools. The results show the advantages of combining technologies in a mobile device and the problems derived from the low accuracy in positioning in such kind of devices. Thus, ideas for improving the positioning accuracy are discussed as well.
102

A Comparison of Optimal Scanline Voxelization Algorithms

Håkansson, Tim January 2020 (has links)
This thesis presents a comparison between different algorithms for optimal scanline voxelization of 3D models.As the optimal scanline relies on line voxelization, three such algorithms were evaluated. These were Real Line Voxelization (RLV), Integer Line Voxelization (ILV) and a 3D Bresenham line drawing algorithm. RLV and ILV were both based on voxel traversal by Amanatides and Woo. The algorithms were evaluated based on runtime and the approximation error of the integer versions, ILV and Bresenham. The result was that RLV performed better in every case, with ILV being 20-250% slower and Bresenham being 20-500% slower. The error metric used was the Jaccard distance and generally started at 20% and grew up towards 25% for higher voxel resolutions. This was true for both ILV and Bresenham. The conclusion was that there is no reason to use any of the integer versions over RLV. As they both performed and approximated the original 3D model worse.
103

Most mezi GLUT a knihovnou pro tvorbu uživatelských rozhraní / Bridge between GLUT and Graphical User Interface Library

Friesse, Jan January 2008 (has links)
This document describes a major problems with creating 3D applications in a graphic library named OpenGL. There are some basic informations about a GLUT library including main advantages and disadvantages and a description of alternative implementations of a GLUT API. Further content is focused on the most familiar graphic libraries for creating user interfaces which should be used to develop the OpenGL applications and with their advantages and disadvantages too. The next part describes a draft of a new GLUT API implementation based on the selected user interface library. Major part of thesis is about implementation of GtkGLUT library. Reader can find this implementation on CD. Last part describes future development plans.
104

Vizualizace rozsáhlých modelů / Visualization of Large Data Sets

Mokroš, Petr January 2009 (has links)
Work is focused on visualization of large data sets, especially on high resolution terrain models. Thus the goal of this work is to design a library which can divide large models to small regular parts for fast render of whole scene using level of detail techniques. Further goal is theoretical analysis how the library for fast and smooth visualization of large scenes in real time can be used.
105

Real-time počítačová hra s prvky UI / A Real-Time Computer Game with AI

Halamíček, Jan January 2009 (has links)
This work deals with an artificial intelligence problematics in real-time computer games. Goal of this project is a creation of an intelligent computer opponent in a real-time enviroment of a multiagent systems.
106

Rozšířená realita pro platformu Android / Augmented Reality for Android Platform

Lžičař, Radek January 2009 (has links)
This thesis deals with Google Android platform, augmented reality and the ARToolKit library. An application demonstrating augmented reality for Google Android was designed and implemented in this thesis.
107

Designing a Streaming Pipeline for the Public Dissemination of Astronomy Data

Bergman, Nisse, Timander Björknert, Hanna January 2022 (has links)
This thesis presents how a solution to fetch and stream a video feed from the astrovisualization software OpenSpace to a web page can be designed. The streaming protocol that was used was WebRTC. Three different methods for fetching data and creating a video feed were investigated: WebRTC, Spout, and GStreamer. Through user tests, the GStreamer method was determined to be the best option for the streaming solution. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
108

A Real Time Indoor Navigation and Monitoring System for Firefighters and Visually Impaired

Gandhi, Siddhesh R 01 January 2011 (has links) (PDF)
ABSTRACT A REAL TIME INDOOR NAVIGATION AND MONITORING SYSTEM FOR FIREFIGHTERS AND VISUALLY IMPAIRED MAY 2011 SIDDHESH RAJAN GANDHI M.S. E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Aura Ganz There has been a widespread growth of technology in almost every facet of day to day life. But there are still important application areas in which technology advancements have not been implemented in a cost effective and user friendly manner. Such applications which we will address in this proposal include: 1) indoor localization and navigation of firefighters during rescue operations and 2) indoor localization and navigation for the blind and visually impaired population. Firefighting is a dangerous job to perform as there can be several unexpected hazards while rescuing victims. Since the firefighters do not have any knowledge about the internal structure of the fire ridden building, they will not be able to find the location of the EXIT door, a fact that can prove to be fatal. We introduce an indoor location tracking and navigation system (FIREGUIDE) using RFID technology integrated with augmented reality. FIREGUIDE assists the firefighters to find the nearest exit location by providing the navigation instructions to the exits as well as an Augmented Reality view of the location and direction of the exits. The system also presents the Incident Commander the current firefighter’s location superimposed on a map of the building floor. We envision that the FIREGUIDE system will save a significant number of firefighters and victims’ lives. Blind or visually impaired people find it difficult to navigate independently in both outdoor and indoor environments. The outdoor navigation problem can be solved by using systems that have GPS support. But indoor navigation systems for the blind or visually impaired are still a challenge to conquer, given the requirements of low cost and user friendly operation. In order to enhance the perception of indoor and unfamiliar environments for the blind and visually-impaired, as well as to aid in their navigation through such environments, we propose a novel approach that provides context–aware navigation services. INSIGHT uses RFID (Radio Frequency Identification), and tagged spaces (audio landmarks), enabling a ubiquitous computing system with contextual awareness of its users while providing them persistent and context-aware information. We present INSIGHT system that supports a number of unique features such as: a) Low deployment and maintenance cost; b) Scalability, i.e. we can deploy the system in very large buildings; c) An on-demand system that does not overwhelm the user, as it offers small amounts of information on demand; and d) Portability and ease-of-use, i.e., the custom handheld device carried by the user is compact and instructions are received audibly.
109

Extensions to OpenGL for CAGD.

Ye, Chunyan 01 May 2003 (has links) (PDF)
Many computer graphic API’s, including OpenGL, emphasize modeling with rectangular patches, which are especially useful in Computer Aided Geomeric Design (CAGD). However, not all shapes are rectangular; some are triangular or more complex. This paper extends the OpenGL library to support the modeling of triangular patches, Coons patches, and Box-splines patches. Compared with the triangular patch created from degenerate rectangular Bezier patch with the existing functions provided by OpenGL, the triangular Bezier patches can be used in certain design situations and allow designers to achieve high-quality results that are less CPU intense and require less storage space. The addition of Coons patches and Box splines to the OpenGL library also give it more functionality. Both patch types give CAGD users more flexibility in designing surfaces. A library for all three patch types was developed as an addition to OpenGL.
110

A Visualization Tool for Drill Rig Simulators used in Software Development / ETT VISUALISERINGSVERKTYG FÖR BORRIGSSIMULATORER ATTANVÄNDA I MJUKVARUUTVECKLING

Larsson, Mikael January 2010 (has links)
Boomer is a machine that is developed and produced by Atlas Copco Rock Drills AB, which is used for underground mining and tunneling. It is a blast-hole drilling rig equipped with drills that are attached to the arms, called booms, which the rig holds. The machine is controlled and monitored by Atlas Copco’s Rig Control System (RCS), which consists of a number of intelligent units connected in a CAN-net. When developing software for the RCS, a simulator that makes it possible to run the software on an ordinary desktop PC is used. The problem is that there is no intuitive way to see how the booms are oriented, while positioning. Therefore it is desirable to have a 3D visualization of the rig, with focus on the booms, which can be used alongside the simulator to get immediate feedback about the movements of the booms. This report describes the process of developing an application that handles communication with the simulator and the 3D visualization. / Boomer är en maskin som utvecklas och produceras av Atlas Copco Rock Drills AB. Maskinen används vid gruvbrytning och tunnelkonstruktion. Boomer är en spränghålsborrigg som är utrustad med borrar vilka är monterade på riggens armar, kallade bommar. En Boomer övervakas och kontrolleras av Atlas Copcos kontrollsystem, RCS, som är ett system bestående av intelligenta enheter sammankopplade i ett CAN-nät. Vid utveckling av mjukvara till RCS används en simulator som gör det möjligt att köra mjukvaran på en vanlig PC. Problemet är att det inte finns något intuitivt sätt att se hur bommarna är riktade medans de blir positionerade. Därför är det önskvärt med en 3D visualisering av borriggen, med fokus på dess boomar, som kan användas tillsammans med simulatorn för att ge en direkt återkoppling av boomarnas förflyttning. Denna rapport beskriver utvecklingsprocessen för en applikation som hanterar kommunikationen med simulatorn och 3D visualiseringen.

Page generated in 0.0262 seconds