• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Emulator for OpenGL ES 2.0 based on C-language Compiler

Tsai, Feng-wen 29 July 2008 (has links)
OpenGL ES 2.0 is the newest 3D graphics technology for hand-held devices established by Khronos. Users need a shading language compiler and a graphics card which is supportive for OpenGL ES 2.0 to develop their application on OpenGL ES 2.0. Without a graphcis processing unit and a corresponding compiler, one can not develop a 3D graphics application based on OpenGL ES 2.0. In order to solve these problems, we proposed an emulator for OpenGL ES 2.0 based on C-language compiler. The proposed emulator applies C-language compiler and CPU to fulfill the specification of OpenGL ES 2.0. With the proposed emulator, application developers can develop a 3D graphics application for OpenGL ES 2.0 without a specific hardware and a corresponding compiler and hardware designers also can compare and debug when designing their own graphics processing unit.
2

Bus Interface Design Between Different Clock Domains and Its Application to OpenGL-ES 2.0 3D Graphics Systems

Lin, Chi-Guang 26 July 2011 (has links)
Asynchronous bus interface units to AMBA AHB are designed so that an OpenGL ES 2.0 vertex shader can communicate with other hardware units via AHB bus under different working frequencies. The first design is to directly implement an asynchronous AHB wrapper for the vertex shader. The other two designs are based on Open Core Protocol (OCP) to allow for more flexibility. The hardware intellectual property (IP), vertex shader in this thesis, to OCP asynchronous unit is designed so that the IP can be developed independently with different bus protocols as long as the OCP-to-bus interface is provided for a particular bus protocol. With the help of asynchronous IP-to-OCP and OCP-to-AHB interface units, the vertex shader IP can operate at different frequencies from the AHB bus. Furthermore, the same vertex shader (VS) can be connected to other bus protocol (such as AXI) of different frequencies if the OCP-to-AXI interface is provided because the the asynchronous VS-to-OCP have been designed in this thesis.
3

Design of a Multi-Core Multi-thread Floating-Point Processor and Its Application in Computer Graphics

Yeh, Chia-Yu 06 September 2011 (has links)
Graphics processing unit (GPU) designs usually adopts various computer architecture techniques to boost the computation speed, including single-instruction multiple data (SIMD), very-long-instruction word (VLIW), multi-threading, and/or multi-core. In OpenGL ES 2.0, user programmable vertex shader (VS) hardware unit can be designed using vectored SIMD computation unit so that it can efficiently compute the matrix-vector multiplication, one of the key operations in vertex transformation. Recently, high-performance GPU, such as Telsa series from nVidia, is designed with many-core architectures with each core responsible for scalar operations. The intention is to allow for efficient execution of general-purpose computations in addition to the specialized graphics computations. In this thesis, we design a scalar-based multi-threaded GPU design that is composed of four scalar processors, one special-function unit, and can execute multi-threaded instructions. We use the example of vertex transformation to demonstrate execution efficiency of the scalar-based multi-threaded GPU. We also make comparison with the vector-based SIMD GPU.
4

Skinning på GPUn : Med dubbel kvaternioner

Björn, Overå January 2012 (has links)
Målet med projektet var att undersöka hur skeletal animationer utförs. Ett mål till var att det skulle vara förbestämda animationer. För att kunna ha förberäknade animationer användes autodesk fbx-filer. Skinningen har använt dubbel kvaternioner istället för matriser.Rapporten visar att skeletal animation med dubbel kvaternion skinning teknik kan utföras genom att använda fbx-filer med data som först exporterats till json-format.
5

Proposta para aceleração de desempenho de algoritmos de visão computacional em sistemas embarcados / Proposed algorithms performance acceleration computer vision in embedded systems

Curvello, André Márcio de Lima 10 June 2016 (has links)
O presente trabalho apresenta um benchmark para avaliar o desempenho de uma plataforma embarcada WandBoard Quad no processamento de imagens, considerando o uso da sua GPU Vivante GC2000 na execução de rotinas usando OpenGL ES 2.0. Para esse fim, foi tomado por base a execução de filtros de imagem em CPU e GPU. Os filtros são as aplicações mais comumente utilizadas em processamento de imagens, que por sua vez operam por meio de convoluções, técnica esta que faz uso de sucessivas multiplicações matriciais, o que justifica um alto custo computacional dos algoritmos de filtros de imagem em processamento de imagens. Dessa forma, o emprego da GPU em sistemas embarcados é uma interessante alternativa que torna viável a realização de processamento de imagem nestes sistemas, pois além de fazer uso de um recurso presente em uma grande gama de dispositivos presentes no mercado, é capaz de acelerar a execução de algoritmos de processamento de imagem, que por sua vez são a base para aplicações de visão computacional tais como reconhecimento facial, reconhecimento de gestos, dentre outras. Tais aplicações tornam-se cada vez mais requisitadas em um cenário de uso e consumo em aplicações modernas de sistemas embarcados. Para embasar esse objetivo foram realizados estudos comparativos de desempenho entre sistemas e entre bibliotecas capazes de auxiliar no aproveitamento de recursos de processadores multicore. Para comprovar o potencial do assunto abordado e fundamentar a proposta do presente trabalho, foi realizado um benchmark na forma de uma sequência de testes, tendo como alvo uma aplicação modelo que executa o algoritmo do Filtro de Sobel sobre um fluxo de imagens capturadas de uma webcam. A aplicação foi executada diretamente na CPU e também na GPU embarcada. Como resultado, a execução em GPU por meio de OpenGL ES 2.0 alcançou desempenho quase 10 vezes maior com relação à execução em CPU, e considerando tempos de readback, obteve ganho de desempenho total de até 4 vezes. / This work presents a benchmark for evaluating the performance of an embedded WandBoard Quad platform in image processing, considering the use of its GPU Vivante GC2000 in executing routines using OpenGL ES 2.0. To this goal, it has relied upon the execution of image filters in CPU and GPU. The filters are the most commonly applications used in image processing, which in turn operate through convolutions, a technique which makes use of successive matrix multiplications, which justifies a high computational cost of image filters algorithms for image processing. Thus, the use of the GPU for embedded systems is an interesting alternative that makes it feasible to image processing performing in these systems, as well as make use of a present feature in a wide range of devices on the market, it is able to accelerate image processing algorithms, which in turn are the basis for computer vision applications such as facial recognition, gesture recognition, among others. Such applications become increasingly required in a consumption and usage scenario in modern applications of embedded systems. To support this goal were carried out a comparative studies of performance between systems and between libraries capable of assisting in the use of multicore processors resources. To prove the potential of the subject matter and explain the purpose of this study, it was performed a benchmark in the form of a sequence of tests, targeting a model application that runs Sobel filter algorithm on a stream of images captured from a webcam. The application was performed directly on the embbedded CPU and GPU. As a result, running on GPU via OpenGL ES 2.0 performance achieved nearly 10 times higher with respect to the running CPU, and considering readback times, achieved total performance gain of up to 4 times.
6

Proposta para aceleração de desempenho de algoritmos de visão computacional em sistemas embarcados / Proposed algorithms performance acceleration computer vision in embedded systems

André Márcio de Lima Curvello 10 June 2016 (has links)
O presente trabalho apresenta um benchmark para avaliar o desempenho de uma plataforma embarcada WandBoard Quad no processamento de imagens, considerando o uso da sua GPU Vivante GC2000 na execução de rotinas usando OpenGL ES 2.0. Para esse fim, foi tomado por base a execução de filtros de imagem em CPU e GPU. Os filtros são as aplicações mais comumente utilizadas em processamento de imagens, que por sua vez operam por meio de convoluções, técnica esta que faz uso de sucessivas multiplicações matriciais, o que justifica um alto custo computacional dos algoritmos de filtros de imagem em processamento de imagens. Dessa forma, o emprego da GPU em sistemas embarcados é uma interessante alternativa que torna viável a realização de processamento de imagem nestes sistemas, pois além de fazer uso de um recurso presente em uma grande gama de dispositivos presentes no mercado, é capaz de acelerar a execução de algoritmos de processamento de imagem, que por sua vez são a base para aplicações de visão computacional tais como reconhecimento facial, reconhecimento de gestos, dentre outras. Tais aplicações tornam-se cada vez mais requisitadas em um cenário de uso e consumo em aplicações modernas de sistemas embarcados. Para embasar esse objetivo foram realizados estudos comparativos de desempenho entre sistemas e entre bibliotecas capazes de auxiliar no aproveitamento de recursos de processadores multicore. Para comprovar o potencial do assunto abordado e fundamentar a proposta do presente trabalho, foi realizado um benchmark na forma de uma sequência de testes, tendo como alvo uma aplicação modelo que executa o algoritmo do Filtro de Sobel sobre um fluxo de imagens capturadas de uma webcam. A aplicação foi executada diretamente na CPU e também na GPU embarcada. Como resultado, a execução em GPU por meio de OpenGL ES 2.0 alcançou desempenho quase 10 vezes maior com relação à execução em CPU, e considerando tempos de readback, obteve ganho de desempenho total de até 4 vezes. / This work presents a benchmark for evaluating the performance of an embedded WandBoard Quad platform in image processing, considering the use of its GPU Vivante GC2000 in executing routines using OpenGL ES 2.0. To this goal, it has relied upon the execution of image filters in CPU and GPU. The filters are the most commonly applications used in image processing, which in turn operate through convolutions, a technique which makes use of successive matrix multiplications, which justifies a high computational cost of image filters algorithms for image processing. Thus, the use of the GPU for embedded systems is an interesting alternative that makes it feasible to image processing performing in these systems, as well as make use of a present feature in a wide range of devices on the market, it is able to accelerate image processing algorithms, which in turn are the basis for computer vision applications such as facial recognition, gesture recognition, among others. Such applications become increasingly required in a consumption and usage scenario in modern applications of embedded systems. To support this goal were carried out a comparative studies of performance between systems and between libraries capable of assisting in the use of multicore processors resources. To prove the potential of the subject matter and explain the purpose of this study, it was performed a benchmark in the form of a sequence of tests, targeting a model application that runs Sobel filter algorithm on a stream of images captured from a webcam. The application was performed directly on the embbedded CPU and GPU. As a result, running on GPU via OpenGL ES 2.0 performance achieved nearly 10 times higher with respect to the running CPU, and considering readback times, achieved total performance gain of up to 4 times.

Page generated in 0.0273 seconds