Spelling suggestions: "subject:"0perational energy used"" "subject:"3operational energy used""
1 |
Climate Impact from Operational Energy Use in Facilities & Households / Klimatpåverkan från driftenergi inom lokaler och hushållHaugaard, Eveline January 2019 (has links)
In 2017, the Swedish Parliament voted for a climate aim which says Sweden should achieve zero net emissions of greenhouse gases in 2045. The building and construction sector is one of the sectors that needs to reduce it’s climate impact. As of 2016, 12.8 million tons of CO2-equivalents was estimated emitted from the sector, which represented about 21 percent oftotal amounts of GHG-gases emitted from Sweden in that year. Several studies has shown that the operational energy use in the life cycle of buildings is source to the majority of the emissions. This thesis was written in collaboration with Skanska Sweden, a Swedish construction company. Currently, there is no available value for the CO2-emissions emitted per m2 from the operational energy use in facilities and households at Skanska Sweden. The aim of this report is therefore to estimate the CO2-emissions emitted per m2 from various building types.This has been achieved through data investigations of what data is available and missing. Furthermore, methodologies have been investigated as well as energy sources for various buildings. Then the emissions were calculated as CO2-eq/m2 per building type. A sensitivity scenario was additionally performed by calcuating climate impact from different electric grids (Swedish, Nordic and European). Finally, a future energy scenario was investigated for2050 to estimate future climate impact from the operational energy use in various building types. The energy data was based on two different databases, Base and Follow Up, whereas Base presented estimated energy interval values. Follow Up presented estimated and verified values. In the data collection, a categorisation was made depending on the various building types Skanska Sweden produces. The 7 categories was Houses, Multi-dwelling buildings,Offices, Care centers, Schools, Pre-schools and Other. The findings were that in all categories but two (schools and offices), the operational energy use is higher when the values are verified, rather than estimated. Recommendations are therefore to increase the amount of available verified values, however, at the same time the amount of estimated values need to increase as well as many categories had a deficient amount of available data, this to increase the reliability of the results. The difference in calculated climate impact is relatively large between categories, depending on energy sources for heating and hot tap water. For instance is the climate impact lowest for Houses when the majority of the energy comes from electricity. At the same time, the climate impact from the category Other is highest, which is because the energy use is high, but additionally because the majority of the energy comes from district heating. Overall, this energy source has higher climate impact than when the electricity is used. Nevertheless, it should be observed that the difference in categories is overall huge, depending on the chosen electricity grid. Future emissions (2050) will be significantly lower than today, especially when the European grid and the EU reference scenario is chosen, but will be dependent on electricity prices additionally. However, if the Swedish climate aim of climate neutrality will be achieved, the climate impact from the operational energy will be minimal in 2050. An important aspect in environmental evaluations of energy is methodological choice. In this project, the attributional perspective has been chosen, however, many studies imply the importance of margin energy, which the attributional perspective does not include.Furthermore, the attributional may present a lower climate impact than when other methodologies are chosen. It is therefore important to be aware of the methodology used and recommendations for future studies would be to investigate the methods more thouroughly. / Under 2017 röstade svenska riksdagen igenom en klimatlag som begränsar klimatpåverkan till netto noll år 2045 från samtliga sektorer. Bygg- och fastighetssektorn är en sektor medstor klimatpåverkan och utgjorde år 2016 21 procent (12.8 miljoner ton) av totala utsläpp i Sverige. Historiskt sett har energianvändningen i drift av byggnader utgjort majoriteten av utsläppen från bygg- och fastighetssektorn och är därför en viktig del att utforska. Skanska Sverige är ett svenskt byggföretag och detta arbete har gjorts i samarbete med företaget. För tillfället finns inget värde på CO2-utsläppen kopplade till energin i drift av byggnader (hushåll och lokaler) som byggts av Skanska Sverige och målet med denna rapport är därför att estimera CO2-utsläpp/m2 från olika byggnadstyper. Detta har upnåtts genom att bland annat utforska vilken data som finns tillgänglig och vad som saknats, samt att utforska metodval och energikällor för olika byggnader för att sedan omvandla energidatan til lgenererade CO2-utsläpp/m2. Vidare utfördes en känslighetsanalys genom att beräkna CO2/m2 för olika elnät (svenskt, nordiskt och europeiskt). Slutligen har även ett framtida energiscenario beräknat för år 2050 använts för att beräkna klimatutsläpp från driftenergin iframtiden. Datan är baserad på två olika databaser, Base och Follow Up, där Base har endast redovisat estimerade energivärden som anges som intervall av nio kWh, samtidigt har Follow Up redovisat både estimerade och verifierade värden. På grund av större datatillgänglighet i Base valdes denna att huvudsakligen basera beräkningar på, men Follow Up och dess verifierade värden har använts till jämförelse. En kategorisering gjordes beroende av vilka byggnadstyper Skanska producerar mest av. De 7 kategorierna var småhus (villor och radhus), flerfamiljshus (lägenheter), kontor, sjukhem, förskolor, skolor och övrigt som inkluderade bland annat sjukhus och hotell. Resultaten har visat att i alla kategorier utom två (skolor och kontor) är energianvändning högre när energin är verifierad än när den är estimerad. Rekommendationer är därför att öka antalet verifierade värden som samlas in, samtidigt som de estimerade även behöver öka för att öka pålitligheten av resultaten då många kategorier har begränsad mängd indata. Skillnaden i beräknad klimatpåverkan är relativt stor mellan olika kategorier, beroende av energikällor för värme och varmvatten. Exempelvis är klimatpåverkan lägst för småhus då största andelen energitillförsel för småhus utgörs av elektricitet. Samtidigt är klimatpåverkan hög från kategori Other, vilket till stor del beror på att energianvändningen (kWh/m2) är hög, men även på grund av att majoriteten av energitillförseln kommer från fjärrvärme. Generellt sett har denna energikälla högre klimatpåverkan. Dock skall det observeras att skillnaden inom kategorier även den är stor, beroende av vilket elnät som valts. Exempelvis är skillnaden stor mellan småhus där elnätet som använts är svenskt, och när elnätet varit europeiskt. Framtida utsläpp kommer vara betydligt lägre än idag, speciellt när det europeiska nätet väljs och EUs referensscenario är utforskat, men är även beroende av framtida elpriser och satsningar på förnybart. Ska det svenska målet om klimatneutralitet 2045 dock uppfyllas kommer klimatpåverkan vara minimal år 2050. En viktig aspekt vid miljövärdering av energi är metodval. I detta projekt har bokföringsperspektivet använts, men flertalet studier har påpekat vikten av att inkludera marginalenergi, samt visat att perspektivet ofta redovisar lägre klimatpåverkan än till exempel konsekvensperspektivet. Det är därför viktigt att vara medveten om vilken metodik som väljs och framtida rekommendationer för studier är förslagsvis att utforska flera metoder,gärna parallellt för att se skillnader.
|
2 |
Managing high environmental performance? : Applying life cycle approaches and environmental certification tools in the building and real estate sectorsBrown, Nils W. O. January 2017 (has links)
The main aim of this thesis is to demonstrate and critically assess life cycle approaches’ and environmental certification (EC) tools’ potential for supporting decisions for improved environmental performance in the building and real estate sectors. Using life cycle approaches, the thesis shows that for new build and renovation cases aiming for low operational energy use that embodied global warming potential (GWP) due to material production can constitute a large portion of a building’s lifetime GWP. Therefore life cycle based information about materials’ embodied GWP needs to be made available to and utilized by design process decision makers. It was also shown that applying the Swedish EC tool Miljöbyggnad was useful in highlighting potential positive and negative changes in indoor environmental quality arising from renovation packages aiming at significant operational energy use reduction in existing multifamily buildings. However such renovation packages are not profitable from a property owner perspective. Miljöbyggnad may be useful when designing policy instruments to overcome this. The thesis also showed that EC and related environmental enhancements contribute to achieving property owners’ and tenants’ overall strategic objectives for value creation. For property owners this arises for example through lower energy costs and attracting desirable tenants. For tenants, value creation arises as support for internal and external environmental communication. For the further development of life cycle approaches’ and EC tools’ application to buildings and real estate it is important to consider how they can be adapted to consider ‘distance to sustainable’ targets referencing for instance the planetary boundaries approach. It is also interesting to investigate how valuation of buildings and real estate may be performed in a way that expands from the current narrow focus on the economic perspective to also include environmental and social perspectives. / <p>QC 20170210</p>
|
Page generated in 0.0993 seconds