• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 3
  • 1
  • Tagged with
  • 67
  • 67
  • 67
  • 14
  • 9
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.

A Bayesian approach to optimal sensor placement

Cameron, Alexander John January 1989 (has links)
By "intelligently" locating a sensor with respect to its environment it is possible to minimize the number of sensing operations required to perform many tasks. This is particularly important for sensing media which provide only "sparse" data, such as tactile sensors and sonar. In this thesis, a system is described which uses the principles of statistical decision theory to determine the optimal sensing locations to perform recognition and localization operations. The system uses a Bayesian approach to utilize any prior object information (including object models or previously-acquired sensory data) in choosing the sensing locations.

Polarization-maintaining optical fiber as a sensor of shell vibrations

Shute, Marcus William, Sr. 08 1900 (has links)
No description available.

The development of an optical position sensor

Kinney, Stuart January 1998 (has links)
A theoretical study of an electrically passive, loss-compensated, optical position sensor is the goal of this project. Optical fiber sensors exploit light as the information carrier. Fiber-optic sensors consist of a constant light source launched into an optical fiber and transmitted to another point at which a measurement is made.In the proposed optical position sensor, a Light Emitting Diode (LED) produces a constant beam of light, which is channeled through an optical fiber to a Graded Index (GRIN) lens. This lens makes all the light rays parallel to one another, a process called collimation. The light then enters a polarizer which is a lens that further orders the light rays in a process called polarization.Then the light enters a chamber in which a doubly refracting (birefringent) crystal is situated. The crystal is a wedge, and thus has a varying thickness throughout its length. The light beam strikes the crystal, sending a spectrum, or spectral signature, that is distinct to the particular thickness of the crystal. That signature goes directly from the chamber housing the crystal into a lens called an analyzer which orders the light again through polarization. Then the light goes into another GRIN lens, and this GRIN lens focuses the light onto an optical fiber, which transmits the particular spectral signature of this light to an optical spectrum analyzer (OSA). The OSA uses a Photodiode Array to accept the incoming light, a device that takes in light and redistributes it to a monitor for display by the user. Such a device is called a detector. The thickness of the crystal that the light travels through is determined by the crystal's position.If the crystal rests on a platform which is connected to an object whose position must always be monitored, then the crystal will move as the object moves. The different spectral signatures shown on a monitor reveal different thicknesses of the crystal, which reveal different positions of the monitored object. The object whose position is measured is the measurand.The selected crystal is quartz. It has a 12.5-mm length, a width of 10.8-mm at its thinnest end, and a taper angle to the thickest end of only 0.008 degrees, which corresponds to a 0.17-micron difference between the two. This angle is called the polishing angle of the quartz. The quartz itself is called the active cell. The Photodiode Array Detector receives the spectral signature from the optical fiber, and that signature is projected on an OSA, which is software built-in to the computer. A mathematical program is used to evaluate the signature, and the position of the measurand is thereby revealed. How accurate the measurement is can be revealed by use of a control device. If the quartz crystal is moved by a measuring device, such as a micrometer, the distance that the crystal moved may be measured by the micrometer, as well as by the OSA. By comparing the two, the accuracy of the spectrograph, and the position it reveals, can be known. / Department of Physics and Astronomy

Femtosecond laser inscribed fiber Bragg grating sensors

Zhan, Chun. January 2007 (has links)
Thesis (Ph.D.)--Pennsylvania State University, 2007. / Mode of access: World Wide Web.

Chemical sensing applications of fiber optics /

Nagarajan, Anjana, January 1994 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 77-79). Also available via the Internet.

A Durability and Utility Analysis of EFPI Fiber Optic Strain Sensors Embedded in Composite Materials for Structural Health Monitoring

Haskell, Adam Benjamin January 2006 (has links) (PDF)
No description available.

Respiration monitoring with a fibre optic sensor

Liang, Yuanxin. January 2008 (has links)
Thesis (PhD) - Swinburne University of Technology, Faculty of Engineering and Industrial Sciences, Centre for Atom Physics an Ultra-fast Spectroscopy, 2008. / A thesis submitted for the degree of Master of Engineering, Centre for Atom Physics an Ultra-fast Spectroscopy, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2008. Typescript. Bibliography: p. 143-149.

Applications of optical fiber sensors with thick metal coatings /

Poland, Stephan H., January 1994 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 64-66). Also available via the Internet.

Fabrication of long-period gratings and their applications in optical fibre communications and sensing systems

Zhu, Yinian 27 February 2009 (has links)
D.Phil. / This dissertation deals with the fabrication, characterisation, and applications of long-period gratings in optical fibre communications and sensing systems. The aim of this project is to assess long-period gratings as media for active or passive fibre devices, particularly as components for the telecommunications industry. A review of the properties and characteristics of fibre gratings associated with the photosensitivity of germanosilicate fibres is provided, which includes a theoretical analysis of the principles of operation for short-period gratings (fibre Bragg gratings) and long-period gratings. The simulations of the spectral response from these two types of gratings are also presented. A number of long-period grating fabrication methods and techniques, which were reported by some researchers, are reviewed. In this project, the normal long-period gratings and phase-shifted long-period gratings are fabricated by using a line-narrowed KrF excimer laser combined with the metal amplitude mask technique. The metal mask is made of a stainless steel sheet, and the slot width (periodicity) is processed by using high quality photographic tooling. Three normal long-period gratings with different periodicities and one phase-shifted long-period grating can be manufactured simultaneously because there are four metal masks imprinted in one inexpensive stainless steel sheet. The mass-production of long-period gratings becomes possible, and the number of gratings that can be written is limited only by the excimer laser beam or metal mask dimension orthogonal to the fibre axis. The fibres that are used in our experiments are photosensitive optical fibres (PS1500). Long-period gratings can be written directly into these fibres without hydrogenation. Two types of long-period grating devices are investigated and developed for applications in dense wavelength division multiplexing (DWDM)networks: erbium-doped fibre amplifier (EDFA) gain-flattening filters and wavelength-tuneable add/drop multiplexers. Firstly, the transmission characteristics of phase-shifted long-period gratings are simulated theoretically by a combination of the coupled-mode theory and the fundamental-matrix method. It is suggested that a phase-shifted long-period grating device cascaded with another normal long-period grating can be used to flatten the gain spectrum of an EDFA containing three gain peaks. The experimental results show that a broad amplifier with peak-to-peak variations of less than 0.7 dB over 36 nm from 1526 to 1562 nm, which covers the entire C-band of the EDFA, can be realized practically. Next, a wavelength-tuneable add/drop multiplexer is designed and configured. In this device, four identical long-period gratings are assembled on piezoelectric ceramic fibre stretchers. The modelling of the device predicts that 50 ITU DWDM-channel signals could be selected in the wavelength range from 1526.25 to 1563.75 nm with 0.75 nm channel spacing and the cross-talk is less than –39 dB while the total insertion loss is about 0.24 dB. There are some significant advantages of wavelength-tuneable add/drop multiplexing devices over conventional fibre Bragg grating-based devices. (1) There is back reflected light and almost no cross-talk power penalty because the long-period grating couples light into forward-propagating modes. (2) Signal channel isolation is very high due to three stages of coupling mechanisms used in this device, which includes core-cladding, cladding-cladding and cladding-core, efficiently filtering out non-resonant light. (3) The insertion loss of the device is limited only by the separation of two long-period gratings, because there are no losses on non-resonant wavelengths of long-period gratings. Several other applications of long-period gratings in optical sensing systems are also described, and some are experimented on including axial strain sensors, structural bend sensors, temperature sensors, refractive index sensors and chemical concentration sensors.

Sensing characteristics of an optical fibre long-period grating Michelson refractometer

Van Brakel, Adriaan 26 February 2009 (has links)
D.Ing. / Most optical fibre-based ambient refractive index sensors (including individual long-period gratings) rely on spectral attributes obtained in transmission. However, a probe refractometer has been proposed that is based on self-interference of a long-period grating (LPG), thus providing reflectance spectra containing the relevant data. This sensor operates as a Michelson interferometer by virtue of the fact that its constituent LPG acts as both a mode converter and coupler. Its construction is such that optical power coupled into the cladding (when light impinges on the LPG) is reflected at a fibre mirror and returns towards the grating, where it is re-coupled into the fundamental guided mode. Since light waves propagating along the core and cladding material of the fibre cavity beyond the LPG experience different optical path lengths (due to differing mode indices), a phase difference exists between these modes upon recombining at the grating location. This causes interference, which is manifested as a characteristic fringe pattern in the sensor’s reflectance spectrum (analogous to that obtained in the transmission of a twin LPG cascade operating as a Mach-Zehnder interferometer). Research was conducted towards implementing a unique method of temperature compensation in this LPG-based Michelson interferometer. Sensing attributes of individual LPGs were investigated first, with specific emphasis on the temperature characteristics of two different types of host fibre. It was found that LPGs manufactured in conventional ATC SMF-28 fibre (previously hydrogen-loaded to inscribe the grating and annealed after fabrication) and B/Ge co-doped PS1500 fibre from Fibercore exhibited temperature characteristics of opposite polarity. This led to the implementation of a compound-cavity Michelson interferometer whose constituent LPG is written in one type of fibre, while a specific length of the other type of fibre is fusion spliced onto the host fibre section. Experiments verified the success of this temperature-compensation technique, which caused a measured reduction in temperature sensitivity of up to in interferometer phase shift. Measurements of the refractive index of the test substance surrounding the cladding material of the Michelson interferometer’s fibre cavity (and not the LPG itself) could therefore be done without being adversely affected by environmental temperature fluctuations. This was demonstrated experimentally by comparing the interferometer’s phase shift – devoid of temperature-induced effects – due to increasing refractive index of the analyte (as a result of escalating temperature) with index of refraction readings from a temperature-controlled Abbe refractometer. Numerical gradients of linear curves fitted to these results differed by two orders of magnitude less than the resolution of readings obtained from an Abbe refractometer – proof of the success of the temperature compensation technique applied in this LPG-based Michelson refractometer.

Page generated in 0.0973 seconds