• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 12
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 161
  • 161
  • 100
  • 36
  • 30
  • 30
  • 30
  • 27
  • 26
  • 25
  • 25
  • 19
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Design, Fabrication, Modeling and Characterization of Electrostatically-Actuated Silicon Membranes

Stahl, Brian C 01 December 2008 (has links) (PDF)
This thesis covers the design, fabrication, modeling and characterization of electrostatically actuated silicon membranes, with applications to microelectromechanical systems (MEMS). A microfabrication process was designed to realize thin membranes etched into a silicon wafer using a wet anisotropic etching process. These flexible membranes were bonded to a rigid counterelectrode using a photo-patterned gap layer. The membranes were actuated electrostatically by applying a voltage bias across the electrode gap formed by the membrane and the counterelectrode, causing the membrane to deflect towards the counterelectrode. This deflection was characterized for a range of actuating voltages and these results were compared to the deflections predicted by calculations and Finite Element Analysis (FEA). This thesis demonstrates the first electrostatically actuated MEMS device fabricated in the Cal Poly, San Luis Obispo Microfabrication Facility. Furthermore, this thesis should serve as groundwork for students who wish to improve upon the microfabrication processes presented herein, or who wish to fabricate thin silicon structures or electrostatically actuated MEMS structures of their own.
72

Optimization of GAN Laser Diodes Using 1D and 2D Optical Simulations

Jobe, Sean Richard Keali'i 01 March 2009 (has links) (PDF)
This paper studies the optical properties of a GaN Laser Diode (LD). Through simulation, the GaN LD is optimized for the best optical confinement factor. It is found that there are optimal thicknesses of each layer in the diode that yield the highest optical confinement factor. There is a strong relationship between the optical confinement factor and lasing threshold—a higher optical confinement factor results in a lower lasing threshold. Increasing optical confinement improves lasing efficiency. Blue LDs are important to the future of lighting sources as they represent the final color in the RGB spectrum that does not have a high efficiency solution. The modeled GaN LD emits blue light at around ~450nm. Each layer of the GaN LD is drawn in a model simulation program called LaserMOD created by RSOFT Design Group, Inc. By properly modifying the properties of each layer, an accurate model of the GaN LD is created and then simulated. This paper describes the steps taken to properly model and optimize the GaN LD in the 1D and 2D models.
73

Quantum Dot Deposition Into PDMS and Application Onto a Solar Cell

Botros, Christopher Marcus, Savage, Richard N 01 December 2012 (has links) (PDF)
Research to increase the efficiency of conventional solar cells is constantly underway. The goal of this work is to increase the efficiency of conventional solar cells by incorporating quantum dot (QD) nanoparticles in the absorption mechanism. The strategy is to have the QDs absorb UV and fluoresce photons in the visible region that are more readily absorbed by the cells. The outcome is that the cells have more visible photons to absorb and have increased power output. The QDs, having a CdSe core and a ZnS shell, were applied to the solar cells as follows. First, the QDs were synthesized in an octadecene solution, then they were removed from the solution and finally they were dried and deposited into polydimethylsiloxane (PDMS) and the PDMS/QD composite is allowed to cure. The cured sample is applied to a silicon solar panel. The panel with the PDMS/QD application outputs 2.5% more power than the one without, under identical illumination by a tungsten halogen lamp, using QDs that fluoresce in the orange region. This work demonstrates the feasibility of incorporating QDs to increase the efficiency of conventional solar cells. Because the solar cells absorb better in the red region, future effort will be to use QDs that fluoresce in that region to further boost cell output.
74

Longwave-Infrared Optical Parametric Oscillator in Orientation-Patterned Gallium Arsenide

Feaver, Ryan K. January 2011 (has links)
No description available.
75

A Laser Hydrophone

Barnoske, Steven Kenneth 01 January 1977 (has links) (PDF)
This report proposes a novel technique for measuring of acoustic fields in water. A Laser Hydrophone is proposed taking advantage of the properties of Total Internal Reflection. A theoretical analysis of the idea is presented followed by a prediction of the operating characteristics of an actual system. Actual data were taken with the proposed system and it is compared to the predicted.
76

NANOMATERIALS: FROM INTERFACIAL CHARACTERISTICS TO DEVICE APPLICATIONS

Wang, Kewei 04 1900 (has links)
<p>Nanomaterials have been heavily studied in the past two decades. Previous findings have demonstrated that the characteristics of nanocomposites and the performance of nanomaterial-based devices are both determined by the interfacial characteristics of the nanomaterials. However, there are still some remaining challenges from interfacial characteristics to device applications, which are specified as follows: the difficulty in identifying the interfacial contacts of nanostructured surfaces, the instability of nanocomposite surfaces, and the under-researched mechanism of the correlation between interfacial characteristics and the performance of devices.</p> <p>Therefore, the main theme of this thesis is to investigate the interfacial contacts of nanostructured solid-liquid interfaces by direct observation, and to develop a stable nanocomposite based on which the direct observation of the interfacial contact can be better conducted, and to eventually investigate the effect of interfacial contacts on the performance of organic solar cells.</p> <p>As the previous identification of the solid-liquid interface is limited to a microscale range, a direct method of tracing the different wetting states of water was developed, on nanostructured surfaces. This method provided an answer to a long standing question of, whether there is a transition from Wenzel to Cassie states in the sliding angle drop on nanocomposite thin films. In order to complete the observation of the wetting states of water, a stable superhydrophobic nanocomposite thin film with hierarchical structure was developed.</p> <p>Furthermore, with the knowledge of identifying the wetting states and the preparing procedures of the nanocomposites, a surfactant-free small-molecule nanoparticle organic solar cell with a much improved fill factor was developed by spin coating. The inverse correlation of series resistance and parallel resistance was discovered, due to the morphology change and the variation of the charge carrier concentration near the donor-acceptor interface in small-molecule organic solar cells.</p> / Doctor of Philosophy (PhD)
77

DYE-SENSITIZED SOLAR CELLS WITH A SOLID HOLE CONDUCTOR

DENG, LULU 04 1900 (has links)
<p>Dye-sensitized Solar Cells (DSSCs) with liquid electrolyte lack long term stability because of volatility of the electrolyte and assembly problems. Replacement of the volatile liquid-state electrolyte with solid-state hole conductor thus becomes necessary. A small molecule based hole conductor, Copper Phthalocyanine (CuPc), is proposed here to replace the liquid electrolyte, for its intrinsic thermal and chemical stabilities. However, a lower short circuit current was found in the CuPc solid state device from I-V curve, which is closely related to the inefficient hole transport in the CuPc thin film. Therefore, Two-Dimensional Grazing Incidence X-ray Diffraction (2D GIXRD) is utilized to study the phase and texture of CuPc thin film. It is found that the CuPc thin film has a cystallinity of greater than 80%, which is good for hole conducting. However, the <em>β</em>-phase formation lowers the overall hole conductivity. The hole conductivity of <em>β</em>-phase CuPc is two orders of magnitude smaller than that of <em>α</em>-phase CuPc, due to a less overlap in the <em>π-π</em> stacking. As a result, the low hole conductivity of <em>β</em>-phase CuPc is the reason that leads to an inefficient hole transport and reduces the short-circuit current of the solid-state DSSC. Therefore, future work will be necessary to isolate <em>α</em>-phase CuPc, in order to be successfully applied into the solid-state DSSCs.</p> / Master of Science (MSc)
78

SPECTRAL ENGINEERING VIA SILICON NANOCRYSTALS GROWN BY ECR-PECVD FOR PHOTOVOLTAIC APPLICATIONS

Sacks, Justin 10 1900 (has links)
<p>The aim of third-generation photovoltaics (PV) is ultimately to achieve low-cost, high-efficiency devices. This work focused on a third-generation PV concept known as down-shifting, which is the conversion of high-energy photons into low-energy photons which are more useful for a typical solar cell. Silicon nanocrystals (Si-NCs) fabricated using electron-cyclotron resonance plasma-enhanced chemical vapour deposition (ECR-PECVD) were studied as a down-shifting material for single-junction silicon cells. A calibration was done to determine optimal deposition parameters for Si-NC formation. An experiment was then done to determine the effect of film thickness on emission, optical properties, and photoluminescence quantum efficiencies.</p> <p>Photoluminescence (PL) peaks varied depending on the stoichiometry of the films, ranging from approximately 790 nm to 850 nm. Variable-angle spectroscopic ellipsometry was used to determine the optical constants of the Si-NC films. The extinction coefficients indicated strong absorption below 500 nm, ideal for a down-shifting material. Transmission Electron Microscopy (TEM) was used to determine the size, density, and distribution of Si-NCs in two of the films. Si-NCs were seen to have an average diameter of approximately 4 nm, with larger nanocrystals more common near the surface of the film. A density of approximately 10<sup>5</sup> nanocrystals per cubic micron was approximated from one of the TEM samples.</p> <p>The design and implementation of a PL quantum efficiency measurement system was achieved, using an integrating sphere to measure the absolute efficiency of Si-NC emission. Internal quantum efficiencies (IQE) as high as 1.84% and external quantum efficiencies (EQE) of up to 0.19% were measured. The EQE was found to increase with thicker films due to more intense photoluminescence; however the IQE remained relatively independent of film thickness.</p> / Master of Applied Science (MASc)
79

Interface and Energy Efficiency of Organic Photovoltaics

Zhao, Xinxin Cindy 10 1900 (has links)
<p>As a promising new technology, organic photovoltaics (OPVs) have been widely studied recently. To improve the device efficiency for commercial use of 10%, a number of attempts have been made in my research. The ultra-low frequency AC field was first employed, to align p/n polymers during fabrication. The resulting devices showed 15% increase in device efficiency, attributed to the optimized morphology and enlarged p/n interface. During the improvement process, dual nanostructures of the polymers were found, the highly oriented layer and the randomly distributed part, which provided a better understanding of the OPVs under the AC field alignment.</p> <p>The OPV stability was then studied by impedance measurements, to track multi-interface degradation without breaking the device. It was found the degradation of p/n junction was attributed to the deteriorated morphology and oxidized polymers, whereas the semiconductor/metal interface changed by producing metal oxides as degradation products.</p> <p>The dramatic contrast between the bilayer and bulk heterojunctions (BHJ) was at last investigated by capacitance measurements in vacuum. The existing models of the BHJs had difficulty explaining the higher overall capacitance, compared with that from the bilayer devices. The resulting puzzling charge density was clarified by separating the measured capacitance into two parallel components, one from the space charge of the proposed Schottky junction, and the other from the dark dipoles presumably formed spontaneously across the donor/acceptor interface.</p> / Doctor of Philosophy (PhD)
80

Polydimethylsiloxane Containing Block Copolymers: Synthesis and Characterization of Alternating Poly(Arylene Ether Phosphine Oxide)-B-Siloxane and Segmented Nylon 6,6 -B-Siloxane Copolymers

Polk, William David 10 December 2001 (has links)
Two novel classes of siloxane containing, organic-inorganic block copolymers were prepared using different synthetic approaches. The first copolymers were alternating poly(arylene ether phosphine oxide)-poly(dimethylsiloxane) systems, prepared via oligomeric silylamine-hydroxyl reactions. Secondly, segmented nylon 6,6-poly(dimethylsiloxane) block copolymers were synthesized via a non-aqueous adaptation of the "nylon 6,6 salt" hydrolytic polyamidization, using bis(aminopropyl) dimethylsiloxane oligomer as a co-reactant. Three series of "perfectly" alternating block copolymers were produced from well characterized hydroxyl-terminated poly(arylene ether phosphine oxide) and dimethylamine-terminated poly(dimethylsiloxane) oligomers, in order to investigate both block length and chemical composition effects. Copolymerization in chlorobenzene resulted in high molecular weight materials capable of forming optically clear, nanophase separated films, which displayed unusual morphologies and good mechanical strength. Thermal gravimetric analysis showed high thermo-oxidative stability and increasing char yield with increasing siloxane content. Additional thermal and mechanical investigations provided evidence of selective phase mixing, particularly at shorter block lengths. Surface analysis showed an enrichment of the siloxane blocks at the air-polymer interface in comparison to the bulk state. This behavior increased in proportion to the length of the parent siloxane oligomers. Evaluation of selected optical properties, e.g., refractive indices, revealed linear trends resulting in values of compositionally weighted averages. Conversely, a series of nylon 6,6-siloxane copolymers were produced from the polycondensation of preformed propylamine-terminated poly(dimethylsiloxane)s, solid nylon 6,6 salt and a corresponding amount of adipic acid to afford siloxane-amide semi-crystalline copolymers with siloxane content ranging from 10 to ~45 wt%. The characterization of high molecular weight and covalent siloxane-amide linkages was hindered by insolubility. For example, crystallinity of the nylon 6,6 precluded the use of common solution techniques, while the susceptibility of the siloxane blocks towards ionic redistribution prevented the use of strongly acidic solvents. However, development of a novel analytical technique using solid state 13C NMR and liquid-solid extraction provided evidence for the presence of covalent bonding between the dissimilar oligomer chains. Thermal gravimetric analysis of resultant copolymers revealed an increase in char yield with increasing siloxane content, a preliminary indicator of increased fire resistance, which was supported by subsequent qualitative Bunsen burner observations. Differential scanning calorimetry showed retention of the polyamide crystalline melt with levels of siloxane incorporation of up to 45 weight %. In conclusion, two novel classes of polydimethylsiloxane containing block copolymers have been successfully synthesized, despite the complications created as a result of the polar/non-polar interactions developed between a semi-inorganic polydimethylsiloxane and the hydrocarbon based polyarylene ethers and nylon 6,6. / Ph. D.

Page generated in 0.077 seconds