• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 7
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 204
  • 204
  • 155
  • 149
  • 46
  • 35
  • 28
  • 26
  • 16
  • 16
  • 15
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Solid state NMR characterization of structural and motional parameter distributions in polyamidoammonium dendrimers

Malyarenko, Dariya Ivanovna 01 January 2001 (has links)
The characterization of narrow distributions of structural and motional parameters, and their evolution during the broad glass transition, is performed for deuterated PAMAM dendrimer salts using solid state NMR. The broadening of deuteron quadrupole echo (QE) lineshapes is consistent with the presence of narrow hydrogen bond length distribution (sigmar < 0.25 A) at the spacer amide and branching tertiary amine sites. The temperature dependent averaging of the experimental lineshapes is explained on the basis of fast planar librations in the dendrimer interior, and fast rotation and intermediate regime libration (in an asymmetric cone) of the dendrimer termini. The amplitudes of libration are temperature dependent and higher for low generation dendrimers, while librational rates show Arrhenius behavior only within the glass transition region. In this region, the width of log-normal distribution of rates increases with temperature at sites associated with chlorine counterions. The largest distributions are still less than one order of magnitude wide, unlike the dendrimer in solution or the linear polymers. Interpenetrated low generations (G < 3), uniform intermediate generations (G = 3--5) with surface network, and backfolded high generations (G > 5), are distinguished by interior and termini dynamics.;In the regime of fast motion QE lineshapes are highly sensitive to the presence of narrow structural and motional parameter distributions, and provide constraints on motional geometry independent of rates. The precise characterization of narrow log-normal rate distributions in the intermediate regime can be done using 2H magic angle spinning (MAS). Deuteron inversion-recovery techniques provide quantitative information on the rates of fast motion. For PAMAM salts, the influence of narrow distributions of structural and motional parameters, and fast planar libration, is negligible for distance determination using Rotational Echo Double Resonance (REDOR). The discrimination between inter- and intra-molecular hydrogen bonding can be done through selective labeling of dendrimer core and termini and dilution in natural abundance samples according to developed strategies. The internuclear distances evaluated on the basis of QE results are 3.4--4.0 A. These fall within the sensitivity range of 13C-15N REDOR, as exemplified by the measurements on small amino acids according to analytically predicted optimum dephasing scheme.
72

The Dynamics of an HCP Crystal with a Substitutional Defect

Karulkar, Pramod C. 01 January 1975 (has links)
We examine the problem of the dynamics of a hexagonal close packed crystal with a single substitutional impurity. The effects of the mass and the force constant changes due to the introduction of the impurity atom are taken into account assuming nearest neighbor interactions under the harmonic approximation. Using Green’s function and group theoretical methods, the equations of motion for the perturbed normal modes are obtained in an exact form. The calculations are performed by allowing for very general force constant changes which can have noncentral as well as central contributions. The analytical expressions obtained expressions obtained by Mannheim and Cohen for cubic systems.
73

Experimental Generation and Manipulation of Quantum Squeezed Vacuum via Polarization Self-Rotation in Rb Vapor

Horrom, Travis Scott 01 January 2013 (has links) (PDF)
Nonclassical states of light are of increasing interest due to their applications in the emerging field of quantum information processing and communication. Squeezed light is such a state of the electromagnetic field in which the quantum noise properties are altered compared with those of coherent light. Squeezed light and squeezed vacuum states are potentially useful for quantum information protocols as well as optical measurements, where sensitivities can be limited by quantum noise. We experimentally study a source of squeezed vacuum resulting from the interaction of near-resonant light with both cold and hot Rb atoms via the nonlinear polarization self-rotation effect (PSR). We investigate the optimal conditions for noise reduction in the resulting squeezed states, reaching quadrature squeezing levels of up to 2.6 dB below shot noise, as well as observing noise reduction for a broad range of detection frequencies, from tens of kHz to several MHz. We use this source of squeezed vacuum at 795 nm to further study the noise properties of these states and how they are affected by resonant atomic interactions. This includes the use of a squeezed light probe to give a quantum enhancement to an optical magnetometer, as well as studying the propagation of squeezed vacuum in an atomic medium under conditions of electromagnetically induced transparency (EIT). We also investigate the propagation of pulses of quantum squeezed light through a dispersive atomic medium, where we examine the possibilities for quantum noise signals traveling at subluminal and superluminal velocities. The interaction of squeezed light with resonant atomic vapors finds various potential applications in both quantum measurements and continuous variable quantum memories.
74

Radiative Width of K*(892) from Lattice Quantum Chromodynamics

Radhakrishnan, Archana 01 January 2022 (has links)
In this dissertation, we use lattice quantum chromodynamics to explore the radiative transitions of πK to K, to calculate the radiative width of the resonant K*(892) which appears in the P-wave πK → γK transition amplitude. The matrix elements are extracted from three-point functions calculated in a finite-volume discretized lattice with a pion mass of 284 MeV. The finite-volume amplitudes, which are constrained over a large number of πK energy points and four-momentum transfers, are mapped to the infinite volume transition amplitude by using the Lellouch-Lüscher formalism. The radiative width is determined to be 35(8) keV by analytically continuing the amplitude into the complex energy plane and calculating the residue at the K* pole.
75

STUDIES OF MAGNETICALLY INDUCED FARADAY ROTATION BY POLARIZED HELIUM-3 ATOMS

Abney, Joshua 01 January 2018 (has links)
Gyromagnetic Faraday rotation offers a new method to probe limits on properties of simple spin systems such as the possible magnetic moment of asymmetric dark matter or as a polarization monitor for polarized targets. Theoretical calculations predict the expected rotations of linearly polarized light due to the magnetization of spin-1/2 particles are close to or beyond the limit of what can currently be measured experimentally (10−9 rad). So far, this effect has not been verified. Nuclear spin polarized 3He provides an ideal test system due to its simple structure and ability to achieve high nuclear spin polarization via spin-exchange optical pumping (SEOP). To maximize the expected signal from 3He, a SEOP system is built with a modern narrowband pumping laser and a 3He target designed to use with a multipass cavity. Additionally, a sensitive triple modulation apparatus for polarimetry is utilized and further developed to detect Faraday rotations on the order of nanoradians. This works presents the results of the measurement of the magnetic Faraday effect.
76

Steady State and Dynamical Properties of an Impurity in a BEC in a Double Well Potential

Mumford, Jesse D. 10 1900 (has links)
<p>The subject of this work is the theoretical analysis of the mean-field and many-body properties of an impurity in a Bose-Einstein condensate in a double well potential. By investigating the stationary mean-field properties we show that a critical value of the boson-impurity interaction energy, W<sub>c</sub>, corresponds to a pitchfork bifurcation in the number difference variable in the mean-field theory. Comparing W<sub>c</sub> to the value of W where the many-body ground state wave function begins to split shows a direct correlation signaling a connection between the many-body and mean-field theories. Investigation of the mean-field dynamics shows that chaos emerges for W > W<sub>c</sub> in the vicinity of an unstable equilibrium point generated by the pitchfork bifurcation. An entropy is defined to quantify the chaos and compared to the entanglement entropy between the BEC and the impurity. The mean-field entropy shows a large gradient at W<sub>c</sub> whereas the entanglement entropy shows no apparent features around the same value of W. An increase in correlations between nearest neighbour many-body eigenvalues is seen as W is increased providing evidence for ``quantum chaos''.</p> / Master of Science (MSc)
77

Raman memory for entanglement in diamonds and light storage in optical fibres

Sprague, Michael R. January 2014 (has links)
Light, when reduced to the level of individual quanta, can possess, besides its familiar properties of wavelength, direction, and polarization, a set of correlations irreducible to classical correlations, among other peculiar behaviour. These correlated states are intrinsically interesting, and are also useful for quantum-enhanced information processing. In this thesis, I use a high-bandwidth, far-off-resonant Raman memory to implement two quantum information primitives -- entanglement generation and light storage -- at room temperature and ambient conditions. Specifically, I show, for the first time, the entanglement of two solid-state objects at room temperature and, also, the storage of light in a hollow-core optical fibre. In the first part, I show that the optical phonon modes of two diamonds can be entangled -- the prototypical non-classical correlation -- at room temperature. The entanglement was generated by spontaneous Raman scattering with projective measurements using single-photon detectors. The degree of entanglement was rigorously quantified by measuring the concurrence -- an entanglement monotone -- of the joint state of the scattered optical fields. In the second part, I store light in the coherent superposition of cesium atoms confined within a kagome-structured hollow-core photonic crystal fibre at room temperature using a far-off-resonant stimulated Raman interaction. The storage efficiency of the memory was 27$pm$1% and the noise level was sufficiently low such that single-photon-level pulses could be stored. Taken together, these results highlight the potential of Raman memories for quantum information tasks in noisy systems with short coherence times.
78

Modelagem de fotodetectores baseados em pontos quânticos que operam na faixa do infravermelho / Modeling based on quantum dot photodetectors operating in the infrared range.

Santos, Andre Luiz dos 13 January 2012 (has links)
Nesse trabalho utilizamos um modelo analítico para avaliar o desempenho de estruturas semicondutoras contendo pontos quânticos que servem de base para a fabricação de fotodetectores que operam na faixa do infravermelho. O desempenho desses dispositivos foram avaliados através da corrente no escuro e da detectividade. Os trabalhos existentes na literatura, baseados neste modelo, não consideram a de­ pendência da estrutura eletrônica do ponto quântico com suas dimensões. Desta forma, neste trabalho, analisamos o comportamento da corrente no escuro e da de­tectividade em função de vários parâmetros que definem a estrutura da amostra, levando em consideração as dimensões dos QDs. Nossos resultados mostraram quais parâmetros devemos ajustar para fazer fotodetectores: (1) que contenham a maior densidade de QDs com dimensões compatíveis com a energia de ionização desejada; (2) que maximizam o desempenho do dispositivo e (3) minimizam o ruído do mesmo. / In this work we used an analytical model to calculate the dark current and the detectivity of infrared photodetectors based on InAs quantum dots semiconductor heterostructures. The existing works reported in the literature based on this analytical model do not take into account the electronic structure of the QD in the calculations. In this way, in the present work, we took into account the QD dimensions when we analized the dependence of the dark current and the detectivity on the parameters which define the sample structure. Our findings show which parameters must be adjusted in order to obtain photodetectors with: (1) the larger density of QDs with dimensions compatible with the wanted ionization energy; (2) that maximize the performance; (3) and that minimize the noise of the devices.
79

Ultraviolet sources for advanced applications in the vacuum UV and near UV

Peng, Sheng 01 January 2004 (has links)
This dissertation documents a systematic study consisting of experimental investigations and theoretical analyses of intense ultraviolet sources in VUV and near-UV. Some engineering issues regarding two prototypes of electrodeless lamps using rf and microwave are discussed.;Various excimers that produce intense UV light are investigated, including: (1) A benchmark Xe2 excimer which has been proven to be very efficient in our novel rf capacitively coupled discharge lamp; (2) A rarely studied excimer, KrI, which suffers from predissociation and was reported to be very weak or invisible by most of other studies; (3) XeI excimer whose emission dominates around 253 nm and is promising as a mercury-free lamp for antibacterial applications. In the above studies, discharge temperatures are estimated from the emission band width. An elaborate kinetic model is developed for KrI to account for the KrI* and I2* intensities as a function of pressure. It was found that Kr2* plays the rule for energy transfer instead of Kr* in the pressure of interest. The electromagnetic wave interaction with charge particles is studied in our 2D and 3D EM-PIC simulations for both the rf and microwave lamps. Important plasma parameters, such as the electron density and temperature are obtained for various pressures. The electron energy distribution function that is important to account for excimer excitation is obtained.;We also performed a high-level ab initio calculation in Gaussian to produce the ground state potential curve for KrI, which agrees with previous scattering experiments and is necessary for predicting spectral emissions. as a systematic study to account for the KrI emission spectra at high pressure, we use a semiclassical model to account for emissions between a bound excited state and an unbound ground state. An explicit expression is obtained to represent the observed spectral intensity. Important molecular constants are obtained for KrI and compared with previous results.
80

A study of molecular order and motion in nematic liquid crystal mixtures

Goetz, Jon Michael 01 January 1993 (has links)
Materials which flow like fluids, but possess anisotropic properties like molecular crystals, are called 'liquid crystals'. Studies of liquid crystals contribute to our understanding of how molecular orientation influences macroscopic properties. This thesis presents experimental and theoretical investigations of molecular order and dynamics in nematic liquid crystal systems. First, deuterium nuclear magnetic resonance is used to determine the degree of orientational order of both components of a liquid crystal mixture simultaneously. The temperature dependence of the four order parameters is interpreted using a newly developed mean field theory of nematic binary mixtures composed of biaxial molecules. Next, mean field theory is applied to predict the phase behavior of arbitrarily shaped nematogens. For single component liquid crystals, the four order parameters needed to quantify orientational order of biaxial molecules in a biaxial nematic phase are calculated as a function of temperature for both rod-like and plate-like liquid crystals. For binary mixtures, temperature-concentration phase diagrams for a variety of molecular shapes are calculated. These theoretical predictions suggest that binary mixtures of highly asymmetric molecules with opposite shape anisotrophies may display stable biaxial nematic phases. Last, deuterium nuclear magnetic spin relaxation rates are measured as a function of temperature to investigate the molecular motion of a liquid crystal and a liquid crystal binary mixture. These experimental results are interpreted using an anisotropic viscosity model of molecular reorientation. The temperature dependence of the correlation times for the molecular motions is examined and discussed. It is demonstrated that mixing probe molecules into a liquid crystal has a profound effect on the molecular motion of the liquid crystal.

Page generated in 0.0887 seconds