Spelling suggestions: "subject:"0ptical properties."" "subject:"aoptical properties.""
591 |
Optical properties in chalcogenide glasses and their temperaturedependence. : Literary survey and experiments.Karlsson, Matilda, Khaled Ali, Saifallah, Lundqvist, Erik, Löthman Ybo, Ask, Sigås, Kalle, Törnquist, Oscar January 2023 (has links)
This study aimed to investigate methods for determining the temperature dependence of the refractive index and absorption of IR-transparent materials through literary studies and experimental tests. Results from the experimental trials were hard to obtain due to the inherent difficulty of measuring optical properties and yielded only temperature trends of transmittance and reflectance. Despite this, the results could be used for speculation regarding the temperature dependency of the refractive index and the absorption which provides insights into the optical properties of a material. There are several suggestions to improve measurements using this method for future work to be able to determine precise values of the properties. Two additional methods have been reviewed with a literary study, the minimum deviation prism method and the improved Swanepoel thin film method. Both methods are regarded as promising candidates for determining refractive index and its temperature dependence with good accuracy. However, the improved Swanepoel method stands out as the more promising candidate. The determination of absorption and its temperature dependence is established to be inherently hard to determine with the experimental method and the two researched methods, thus suggestions for measuring the absorption in future work are given.
|
592 |
Optical properties and carrier dynamics in anisotropic two-dimensional transition metal dichalcogenides ReS₂ / 異方性二次元遷移金属ダイカルゴゲナイド材料ReS₂の光特性およびキャリアダイナミクスWang, Xiaofan 24 November 2021 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第23586号 / エネ博第432号 / 新制||エネ||82(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー応用科学専攻 / (主査)教授 松田 一成, 教授 宮内 雄平 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
|
593 |
Development and Optimization of Scanning nano-Raman SpectroscopyMehtani, Disha 05 October 2006 (has links)
No description available.
|
594 |
Polymer-infiltrated zirconia ceramic matrix materials with varying density and compositionAngkananuwat, Chayanit 01 September 2023 (has links)
BACKGROUND: Polymer-infiltrated zirconia ceramic, benefiting from the synergistic effect of the ceramic matrix providing strength and the polymer enhancing toughness, has the potential to mimic the structure of natural teeth in its optical and mechanical properties.
OBJECTIVE: To determine the effect of additives and various sintering temperatures on the optical and mechanical properties of zirconia ceramic matrix composites.
MATERIALS AND METHODS: Groups consisted of unmodified zirconia powder, and zirconia modified with porcelain and porogens to form the porous ceramic matrix. Three types of Tosoh zirconia powder, TZ-3YSB-E, Zpex, and Zpex Smile, were used to fabricate porous blocks. Zirconia powder and porcelain powder were ball-milled separately. Zirconia powder was dry pressed and then cold isostatic pressed. The blocks were sintered at 1000 and 1150 ºC and sectioned into discs (n=10). For zirconia with additives groups, 10% of Titankeramik and 5% of PEG8000 were mixed to zirconia powder using a high-speed mixer. The zirconia blocks were pressed and sintered at 1000, 1150, 1200 and 1300 ℃, and sectioned into discs (n=10). Porous discs were treated with a 10% wt solution of 10-MDP for 4 hours and then dried in a vacuum oven for 24 hours. TEGDMA-UDMA resin monomers were infiltrated into discs and cured at 90°C under pressure. Polymer-infiltrated ceramics specimens were polished to 1.5 mm in thickness. Optical properties were determined with an X-rite spectrophotometer. Biaxial flexural strength and Vickers indentation tests were performed using an Instron universal mechanical tester. Vickers hardness and indentation fracture toughness values were calculated by measuring the indent dimensions under FESEM, in addition to microstructure assessment. Statistical analyses were performed using computer software, Microsoft Excel 2016 and JMP Pro 15.
RESULTS: This study revealed that the type of zirconia powder utilized for the fabrication of porous ceramics for polymer-infiltration structures did not significantly influence their optical properties. Mean values of fully sintered zirconia showed significantly higher biaxial flexural strength (628.5-1277.4 MPa) than polymer-infiltrated groups (105.4-433.6 MPa), with P-3Y1150 achieving the highest value. Higher pre-sintering temperature from 1000 ℃ to 1150 ℃ led to enhanced biaxial flexural strength for polymer-infiltrated pure zirconia specimens, with values rising from 126.5-158.2 MPa to 243.4-433.6 MPa. Adding porcelain and porogens did not significantly affect the optical or specific mechanical properties, such as biaxial flexural strength and Vickers hardness, despite increasing the sintering temperature to 1300 ℃. Nevertheless, a significant increase in indentation fracture toughness was noted with ZPTKPEG1200 (7.65±0.55 MPa·m1/2) and ZPTKPEG1300 (7.09±0.61 MPa·m1/2), values that were markedly higher than those in all control groups of fully sintered zirconia (p<0.001). Sintering temperature was found to be a key determinant in influencing the ceramic matrix's microstructure, porosity, and density, as well as the biaxial flexural strength, Vickers hardness, and indentation fracture toughness of polymer-infiltrated zirconia. While changes in temperature did not affect optical properties, and polymer infiltration did not enhance all attributes, it did substantially elevate the indentation fracture toughness in mixed zirconia samples with additives, offering a potential area for further research.
CONCLUSION: The mechanical properties of polymer-infiltrated ceramics responded significantly to the sintering temperature and the type of zirconia powder utilized, most notably in the 3Y-TZSB-E group. A notable increased indentation fracture toughness was discernible when Zpex powder, mixed with additives, was subject to polymer infiltration and sintered at temperatures between 1200-1300 °C. Even though polymer infiltration and additive incorporation did not uniformly enhance all properties, a noticeable improvement in fracture toughness was observed. These findings open the door to future research, especially in potential applications of dental restorative materials that demand superior fracture toughness.
|
595 |
SYNTHESIS AND OPTICAL PROPERTIES OF ULTRAFINE METAL NANOPARTICLES ON DIELECTRIC ANTENNA PARTICLESWei, Qilin, 0000-0003-1729-1951 January 2022 (has links)
Effective light energy conversion into other forms of energy in metal and metal compound nanoparticles has been of great interest in past decades. Being illuminated by incident light, electrons in the nanoparticles can be excited to higher energy states followed by deposition of energy into other molecules around their surface and the lattices in the following relaxation process. Ultrafine nanoparticles are thus preferred in these processes due to their high specific surface areas. Moreover, the portion of excited electrons with higher energies is higher in smaller nanoparticles than in larger ones. However, the overall light power absorbed by nanoparticles is proportional to the square of particle size, which causes the ultrafine nanoparticles not to efficiently absorb the incident light, or to drive further chemical or physical processes.Light antennae materials are usually employed to enhance the light absorption of these ultrafine nanoparticles. Plasmonic nanoparticles, e.g., Ag, Au, Cu, and Al nanoparticles, enhance the light absorption of loaded nanoparticles mainly through strong electromagnetic fields generated near their surfaces and have been proven to be effective light antennae to benefit the light energy conversion of ultrafine nanoparticles. On the other hand, spherical dielectric particles, e.g., silicon dioxide nanospheres, represent a different type of light antennae with the advantages of low cost, simple synthesis, and negligible Ohmic loss when being illuminated. When the sizes of high geometric symmetry dielectric nanospheres are comparable with the wavelength of the incident light, Mie scattering can happen based on the difference in refractive index between the sphere and the surrounding medium, generating size-dependent scattering resonances at various wavelengths. At these wavelengths, strong electric fields can be created on the surface of dielectric spheres to enhance the light absorption of the nanoparticles loaded on the surface. Previous works have shown that silica nanospheres with a diameter of several hundreds of nanometers can effectively enhance the light absorption of ultrafine Pt nanoparticles and benefit photocatalytic reactions, e.g., selective oxidation of benzyl alcohol. Over the past few years, this concept has been broadened to other ultrafine nanoparticles to study their novel photo-to-chemical/physical properties. However, the availability and comprehensive understanding of the optical properties of this class of composite particles still need to be improved. These challenges limit the further development of these composite materials in new light energy conversion processes. This dissertation aims at studying this class of novel ultrafine nanoparticles/dielectric sphere composite particles synthesis and optical properties.
In Chapter 2, a synthesis protocol of ultrafine ruthenium oxyhydroxide nanoparticles on the surface of silica nanospheres’ surfaces is introduced. Unlike the traditional synthesis of nanoparticles in solution followed by a loading process, the method developed in this chapter only requires the injection of aqueous ruthenium salt solution into a silica nanosphere dispersion. The obtained ultrafine nanoparticles with sizes of 2-3 nm are characterized to be ruthenium oxyhydroxide (RuOOH) nanoparticles. The silica nanospheres are crucial in stabilizing these ultrafine RuOOH nanoparticles and enhancing their light absorption. Due to the presence of ruthenium-oxygen bonds in the nanoparticles, the absorbed photons are converted to heat and transferred to the surrounding media with a photo-to-thermal conversion efficiency close to the unity. Experimental results have shown that heat can be effectively used in accelerating the reaction rate of selective oxidation of benzyl alcohol by molecular oxygen. Kinetics data also have shown that these ultrafine RuOOH nanoparticles are able to activate molecular oxygen adsorbed on their surfaces, which represents a novel property of these ultrafine RuOOH nanoparticles that is not observed in other traditional ruthenium catalysts.
In Chapter 3, a more general synthesis method of ultrafine metal and metal oxyhydroxide nanoparticles on silica nanospheres is developed, inspired by the synthetic route in Chapter 2. Instead of functionalizing silica surfaces with silane agents with amino groups, the silica surfaces are selectively etched by an aqueous base to create a high density of surface hydroxyl groups. These hydroxyl groups can provide basic sites to stabilize metal ions in aqueous dispersion, which are nuclei for the further growth of larger metal oxyhydroxide nanoparticles. In this chapter, more than ten kinds of metal ions are loaded onto silica spheres, forming oxyhydroxide nanoparticles with average sizes below 5 nm. Some oxyhydroxide nanoparticles can be reduced by 5% H2/N2 to form metal nanoparticles with their ultrafine sizes maintained. The synthesis protocol is promising in preparation of bimetallic samples. The composition and optical absorption of all obtained composite particles are analyzed, demonstrating the practicability of utilizing the reported method to prepare high-quality light-absorbing composite particles.
In Chapter 4, the optical absorption property of the composite particle is systematically studied. Using ultrafine Pt nanoparticles as the light absorbing material, the light absorptions of composite particles consisting of silica spheres with diameters from 100 to 1100 nm loaded with these Pt nanoparticles are studied. Through the combination of theoretical calculation based on Mie theory and the measured optical absorption spectra, the scattering resonance peaks are successfully located in each sample. It is also found that the photonic crystal effect and the general absorption of Pt nanoparticles can contribute to the light absorption spectra, especially at higher wavelengths. The relationship between the general absorption of Pt nanoparticles and the packing density of the powder is further studied. The successful deconvolution of several components in the absorption spectra can guide the further rational design of composite particles in optical-related applications.
In Chapter 5, the composite particle system is further broadened to using high refractive index zinc sulfide nanospheres as a light antenna. The use of a higher refractive index light antenna is promising for obtaining higher light absorption enhancement in loaded ultrafine nanoparticles, even though the sample is dispersed in organic media with a high refractive index as well. After the successful loading of Pt nanoparticles to the surface of silica-coated zinc sulfide nanospheres, a protocol for analyzing their light absorption spectra in organic media is proposed. Size-dependent scattering resonance peaks are observed in bare zinc sulfide nanospheres and can be utilized to enhance the light absorption of Pt nanoparticles, even when the sample is sealed in high refractive index polymeric matrices. The composite particles are further employed in photothermal tests, the results prove that the better light absorption enhancement using zinc sulfide than silica nanospheres.
The results introduced in this dissertation represent the first systematic and comprehensive study of ultrafine metal and metal oxyhydroxide nanoparticles loaded on the surface of dielectric light antenna particles. The conclusions open an avenue to further rational design of high-performance light-absorbing composite particles to be used in photo-to-thermal/chemical processes. / Chemistry
|
596 |
Evaluation of Diffuse Reflectance Spectroscopy and Fluorescence Spectroscopy for Detection of Glioma Brain TumorsLe, Vinh Nguyen Du January 2017 (has links)
Imaging instruments are required for accurate tumor resection during neurosurgery, especially in the case of glioblastoma multiforme (GBM) - the most common and aggressive malignant glioma. However, current intraoperative imaging techniques for detection of glioma either suffer low sensitivity and low specificity or require a significant capital cost. Advances in diffuse reflectance spectroscopy and fluorescence spectroscopy have offered high sensitivity and high specificity in differentiating tumors from normal tissues with much lower capital cost. Whereas diffuse reflectance spectroscopy alone and fluorescence spectroscopy alone has been used in limited studies to differentiate normal brain tissues from brain tumors with moderate sensitivity and specificity, low specificity and sensitivity were usually observed when studying high grade glioma (HGG) such as GBM. Furthermore, optical properties and diffuse reflectance signal of HGG and low grade glioma (LGG) have not been observed separately, and thus a relation between optical properties and glioma progression has not been established. Intraoperative differentiation of GBM and LGG can be helpful in making treatment plan at the first surgery.
This thesis focuses on characterizing a previous integrated system of diffuse reflectance spectroscopy and fluorescence spectroscopy to extract optical properties and fluorescence properties of LGG and GBM. First, tissue-simulating phantom models were developed to calibrate the integrated system. The direct method and Mie theory were used to calculate optical scattering of the phantoms while Beer-Lambert’s law was used to calculate optical absorption. Second, an experimental method was introduced to recover intrinsic fluorescence because the measured fluorescence signal is likely distorted by the presence of scatterers and absorbers in tissue (i.e. hemoglobin). Third, an experimental method was developed to recover optical properties of both GBM and LGG. In addition, the sensitivity and specificity of the integrated system was optimized. / Thesis / Doctor of Philosophy (PhD)
|
597 |
Magneto-Optical Properties of One-Dimensional Photonic CrystalsShakya, Bijayandra January 2011 (has links)
No description available.
|
598 |
Synthesis and Characterization of CdS Nanoparticle/Polymer CompositesLama, Bimala 26 August 2013 (has links)
No description available.
|
599 |
Deposition and Characterization of Amorphous GaN Thin FilmsKang, Yixiu 02 August 2002 (has links)
No description available.
|
600 |
Optical properties of CdTe/Cd<sub>1-x</sub>Zn<sub>x</sub>Te strained-layer single quantum wellsLi, Tiesheng January 1993 (has links)
No description available.
|
Page generated in 0.1173 seconds