Spelling suggestions: "subject:"0ptical properties."" "subject:"aoptical properties.""
581 |
Electron-electron Interactions and Optical Properties of Two-dimensional NanocrystalsSzulakowska, Ludmila 11 September 2020 (has links)
This thesis presents a theory of electron-electron interaction effects and optical properties
of nanostructures of two-dimensional (2D) honeycomb crystals - graphene and transition metal dichalcogenides (TMDC). Graphene, a semimetallic hexagonal lattice of carbon atoms can be described by a massless Dirac fermion model, with the conduction band (CB) and valence band (VB) touching in the corners of a hexagonal Brillouin zone, valleys K and -K. TMDC crystals sites host either a transition metal atom or a chalcogen dimer, which opens the energy gap and allows for describing their low-energy nature with massive Dirac fermion (mDf) model. The metal atom in TMDC crystals causes strong spin-orbit (SO) coupling, resulting in large SO splitting in bands at both valleys. For TMDCs it is possible to excite carriers in each valley with oppositely circularly polarised light, which offers promising prospects for devices based on electrons valley index, i.e. valleytronic devices. Additionally, the optical response of TMDCs is enhanced by the presence of secondary CB minima, at Q-points.
The dimensionality of 2D crystals can be further reduced to form quantum dots (QDs) - nanostructures con ned in all dimensions. This thesis first discusses hexagonal graphene QDs, which exhibit energy gap oscillation as a function of size, due to the edge type: zigzag or armchair. These QDs are divided into concentric rings, analysed with tight-binding (TB) model. An armchair edged QD is built from a zigzag edged QD by adding a 1D Lieb lattice of carbon atoms on its edge. The energy gap is formed differently for both edges: from the outer ring states for zigzag edge and from the 1D Lieb lattice zero-energy states for armchair edge, which causes the energy gap. The remaining portion of the thesis focuses on TMDC materials. First a TB model is presented for a member of TMDC group, MoS2, using three d orbitals of Mo atom and three p orbitals of the S2 dimers. The tunneling matrix elements between nearest-neighbor and next-nearest-neighbour sites are explicitly derived at K and -K to form a six band TB Hamiltonian. Its solutions are fitted to the bands obtained from the density functional theory ab initio calculations to obtain the correct behaviour of bands around K and additional minima at Q-points, which explains the role of d orbitals in TMDCs. Close to K the TB model is reduced to mDf model, which
is then studied in response to light, yielding the valley-dependent selection rules for
absorption. The interaction of mDf with light is further studied in the presence of strong external magnetic eld, which leads to the formation of Landau levels (LLs), asymmetric
between both valleys, and valley Zeeman splitting. These LLs are populated with electrons
to form a Hartree-Fock ground state (GS), which can exhibit valley polarisation due to the LL asymmetry. Quasi-electron-hole excitations out of the GS are then formed and their self-energy, vertex corrections and scattering energy is calculated. The effect of electron-electron interactions on valley Zeeman splitting is demonstrated and the Bethe-Salpeter equation is numerically solved to give magnetoexciton spectrum for both valleys. The results include a valley-dependent absorption spectrum for mDf magnetoexcitons that vary with the valley polarisation.
The final part of this thesis discusses the single particle and interacting effects in gated MoS2 QDs. First, I perform a single electron atomistic calculation for a million-atom computational box with periodic boundary conditions based on a TB model developed from ab initio methods for bulk MoS2. Electrons are then con ned with a parabolic electrostatic potential from top metallic gates. They exhibit twofold degenerate harmonic oscillator energy spectrum with shell spacing ω associated with valleys K as well as a sixfold degenerate energy spectrum derived from the Q-points. The degeneracy of electronic shells is broken due to valley contrasting Berry curvature,which acts as an effective magnetic eld splitting opposite angular momentum states in both valleys. I populate up to ve K-derived harmonic oscillator shells with up to six electrons and turn on the electron-electron interactions. The resulting GS phases form two regimes dependent on ω, which are dominated each by a broken-symmetry phase, i.e. valley and spin polarised GS for low ω and valley and spin unpolarised but spin intervalley antiferromagnetic GS for higher ω. This behaviour is explained as an effect of the strong SO splitting, weak intervalley exchange interaction and strong correlations. Means of detecting these effects in experiment based on the spin and valley blockade are proposed. These results advance the understanding of interaction-driven breaking of symmetry for valley systems, crucial for designing of valleytronic devices in the future.
|
582 |
Effet de taille et du dopage sur la structure, les transitions et les propriétés optiques de particules du multiferroïque BiFeO₃ pour des applications photocatalytiques / Size and doping effect on the structure, transitions and optical properties of multiferroic BiFeO₃ particles for photocatalytic applicationsBai, Xiaofei 16 February 2016 (has links)
Ce travail de thèse expérimentale a été consacré à la synthèse par des méthodes de chimie par voie humide de nanoparticules à base du multiferroïque BiFeO3 et à leur caractérisation, avec comme objectif finale des applications photocatalytiques. Ce matériau présente une bande interdite, avec un gap de 2.6eV, qui permet la photo-génération de porteurs de charges dans le visible faisant ainsi de BiFeO3 un système intéressant pour des processus photo-induits. Ce travail s’est en particulier focalisé à caractériser les propriétés de nanoparticules à base de BiFeO3 en vue de comprendre l’effet de ses propriétés sur leur potentiel dans des applications liées à la photocatalyse. Tout d’abord, l’étude des effets de taille sur les propriétés structurales, de transitions de phase, et physico-chimiques des particules a été réalisée, en gardant comme principal objectif de découpler les propriétés liées à la surface de celles du massif/cœur de la particule. Pour cela, une maîtrise et une optimisation des procédés de synthèse de particules aux échelles nano- et micro-micrométriques de BiFeO3 a été nécessaire pour obtenir des composés de taille variable et de très bonne qualité cristalline. Malgré la diminution de la taille des particules, on constate que, grâce au contrôle de paramètres de synthèse, nos nanoparticules présentent des propriétés très proches à celles du massif de BiFeO3, gardant la structure rhomboédrique R3c avec des faibles effets de contrainte. Afin de contrôler indirectement par le dopage les propriétés optiques des composés à base de BiFeO3, on a réussi à réaliser un dopage très homogène en La3+, et un dopage partiel en Ca2+, sur le site de Bi3+. Les propriétés optiques des nanoparticules et leurs applications dans les premières expériences photocatalytiques sur la dégradation du colorant rhodamine B ont montré la complexité de la physico-chimie de leur surface et du processus d’interaction lumière-particule. Après analyse des données d’absorbance optique en fonction de la taille de nanoparticules, on observe que la bande interdite déduite pour ces différentes particules n’est pas le facteur prédominant sur les performances photocatalytiques. D’autres facteurs ont pu être identifiés comme étant à l’origine de la localisation de charges photo-générées, tels que des états de surface liés à une fine couche de peau ou skin layer sur les nanoparticules, présentant des défauts structuraux, une réduction de l’état d’oxydation du Fe3+ vers le Fe2+ et la stabilisation d’autres adsorbats, tels que FeOOH ; tous ces facteurs peuvent contribuer au changement dans les performances photocatalytiques. Les résultats photocatalytiques restent très encourageants pour poursuivre les études de nanoparticules à base de BiFeO3, montrant une dégradation de la rhodamine B à 50% au bout de 4h de réaction photocatalytique pour certaines des nanoparticules étudiées. / This experimental PhD work has been dedicated to the synthesis, by wet chemistry methods, and characterization of nanoparticles based on multiferroic BiFeO3, with the aim of using them for photocatalytic applications. This material presents a bandgap of 2.6eV, which allows the charge carrier photoexcitation in the visible range, making BiFeO3 a very interesting system for photoinduced processes. This thesis has been particularly focused on characterizing the properties of BiFeO3 nanoparticles in view of understanding the relationship of their properties on their potential use for photocatalytic applications. First of all, the topic of the size effect on the structural properties, phase transitions, and physics and chemistry of the particles has been developed, keeping as first aim to separate the properties related to the surface from those arising from the bulk/core of the particle. To do so, the mastering and optimization of the synthesis processes of BiFeO3 particles at the nano and microscale were needed, to finally obtain different size compounds with high crystalline quality. Despite the size reduction of the particles, we notice that, thanks to the control of the synthesis process, our BiFeO3 nanoparticles present properties very close to those of the bulk BiFeO3 material, keeping the rhombohedral structure R3c with weak strain effects. In order to indirectly tune the optical properties exploiting the doping, we have succeeded in realizing a homogenous La3+ doping, and a partial Ca2+ doping, on the Bi3+ site. The optical properties of the nanoparticles and their use on the first photocatalytic experiments for degrading rhodamine B dye have shown the complexity of the physics and chemistry phenomena at their surface and of the light-particle processes. After analyzing optical absorbance data as a function of the particle size, we observe that the deduced bandgap for different particles is not the main parameter directing the photocatalytic performances. Other factors have been identified to be at the origin of the localization of the photoexcited charges, as the surface states linked to the skin layer of the nanoparticles, depicting structural defects, a reduction of the oxidation state of Fe3+ towards Fe2+ and the stabilization of other adsorbates, such as FeOOH; all these parameters may contribute to the change on the photocatalytic performances. The photocatalytic results are very encouraging, motivating to continue the study of BiFeO3 based nanoparticles, though depicting a 50% rhodamine B degradation after 4h of photocatalytic reaction using some of the present nanoparticles.
|
583 |
Photo-réponses d'oxydes ferroélectriques / Photo-response of ferroelectric oxidesVolkova, Halyna 19 November 2018 (has links)
Il y a un besoin de nouvelles technologies photovoltaïques avec une efficacité de conversion lumière-électricité augmentée, qui puissent être des alternatives aux dispositifs plus traditionnels d’efficacité limitée et couteux à base de jonctions p-n. Dans ce contexte, la recherche sur les pérovskites ferroélectriques inorganiques ouvre des possibilités pour le développement de nouvelles approches pour augmenter l’efficacité, par exemple grâce à leur aptitude à séparer les charges électriques photoexcitées par le champ électrique intrinsèque (associé à leur polarisation) qui existe dans chaque maille élémentaire de ces matériaux. Pour profiter de cet avantage, un matériau doit posséder plusieurs propriétés comme la ferroélectricité, une bande interdite d’énergie relativement petite pour pouvoir absorber la lumière et une mobilité des porteurs de charges élevée. Ici, on a synthétisé et étudié des solutions solides Ba(Sn,Ti)O3, qui ont comme composants parents un ferroélectrique BaTiO3 et un paraélectrique BaSnO3. Les transitions de phases cristallographiques et la modification des états des dipôles sont caractérisées par les méthodes de diffraction et la spectroscopie diélectrique. La spectrométrie des photoélectrons X montre une corrélation entre l’évolution non-linéaire de la bande interdite pour les différentes compositions et entre l’évolution des charges locales dynamiques. Les propriétés optiques en température sont dominées par l’arrangement des dipôles dans les compositions ferroélectriques. Pour les autres compositions les propriétés sont plutôt guidées par les défauts. Il a été possible de déterminer les températures critiques des différents mécanismes à partir des caractérisations optiques. Dans ce système Ba(Sn,Ti)O3, les propriétés optiques et le photocourant sont fortement reliés à la structure locale particulière et la nature de la liaison chimique, comme nous avons mis en évidence par la spectroscopie Raman et la spectrophotométrie photoélectronique X. / There is an active search for new photovoltaic technologies with improved efficiency, since the traditional p-n junctions have either the limited efficiency or the increased cost. The research on inorganic ferroelectric perovskites offers opportunities to develop new approaches and increase photovoltaic efficiency, for instance due to capability of these materials to more efficiently separate the photoexcited charges due to the existence of an internal electric field within their unit cell. To profit from this advantage, the material must combine properties like ferroelectricity, relatively small band gap and high charge mobility. In this work, we have synthesized and studied compounds from Ba(Sn,Ti)O3 solid solution, having as end members ferroelectric BaTiO3 and paraelectric BaSnO3. Crystallographic phase transitions and changes of the polar states were characterized by diffraction techniques and dielectric spectroscopy. The non-linear evolution of the band gap for different compounds has been correlated to arise from evolution of the local dynamic charge existing in these compounds, as deduced from X-ray photoelectron spectroscopy. The temperature-dependent optical properties are dominated by polar order in ferroelectric compositions, while for the other compositions the defect-related mechanisms prevail. The critical temperatures for different mechanisms can be determined from optical characterization. In these compounds, the optical properties and photocurrent are strongly related to particularities of the local structure and chemical bonding deduced from Raman and X-ray photoelectron spectroscopies.
|
584 |
Optical Properties of Nanostructured Dielectric CoatingsGiatti, Brandon 05 August 2014 (has links)
Solar cells have extrinsic losses from a variety of sources which can be minimized by optimization of the design and fabrication processes. Reflection from the front surface is one such loss mechanism and has been managed in the past with the usage of planar antireflection coatings. While effective, these coatings are each limited to a single wavelength of light and do not account for varying incident angles of the incoming light source. Three-dimensional nanostructures have shown the ability to inhibit reflection for differing wavelengths and angles of incidence. Nanocones were modeled and show a broadband, multi-angled reflectance decrease due to an effective grading of the index.
Finite element models were created to simulate incident light on a zinc oxide nanocone textured silicon substrate. Zinc oxide is advantageous for its ease of production, benign nature, and refractive index matching to the air source region and silicon substrate. Reflectance plots were computed as functions of incident angle and wavelength of light and compared with planar and quintic refractive index profile models. The quintic profile model exhibits nearly optimum reflection minimization and is thus used as a benchmark. Physical quantities, including height, width, density, and orientation were varied in order to minimize the reflectance. A quasi-random nanocone unit cell was modeled to better mimic laboratory results. The model was comprised of 10 nanocones with differing structure and simulated a larger substrate by usage of periodic boundary conditions. The simulated reflectance shows approximately a 50 percent decrease when compared with a planar model. When a seed layer is added, simulating a layer of non-textured zinc oxide, on which the nanocones are grown, the reflectance shows a fourfold decrease when compared with planar models. At angles of incidence higher than 75 degrees, the nanocone model outperformed the quintic model.
|
585 |
Growth and Optical Characterization of Zinc Oxide Nanowires for Anti-reflection Coatings for Solar CellsCoakley, Martha 01 January 2011 (has links)
The optical properties of solar cells greatly affect their efficiencies. Decreasing the broadband and directional reflectance of solar cells increases the solar irradiance transmitted and absorbed by the cell, thereby increasing the production of electron-hole pairs. Traditional optical enhancements such as light trapping and anti-reflection coatings reduce the reflectance of silicon at an optimized wavelength and angle of incidence. They do not perform as well at high angles of incidence or over the broadband solar spectrum. Theoretical studies suggest that layers with a suitable gradient-index of refraction can create both a broadband and directional anti-reflective coating. Through their variations in height and tapered growth, Zinc oxide (ZnO) nanowires can create a gradient index anti-reflection coating. ZnO is a wide-band gap semiconductor that is non-absorbing over most of the solar spectrum. With low cost, low temperature techniques, ZnO nanowires can be grown with a variety of morphologies. ZnO nanowires were grown by aqueous chemical growth and by electrodeposition on silicon to create a gradient-index anti-reflective coating for solar cell applications. The nanowire arrays were characterized using SEM images, goniometer scattering measurements, and integrating sphere total reflectance measurements. ZnO nanowires grown by aqueous chemical growth on silicon had average diameters between 60 nm and 100 nm and average lengths between 800 nm and 1100 nm. The nanowires had vertical alignment. They exhibited relatively small diffuse reflectivities and relatively large specular reflectivities. ZnO nanowires grown by electrodeposition had greater variances in length and diameter, with average diameters between 85 nm and 180 nm and average lengths between 500 nm and 1200 nm. Electrodeposited ZnO nanowires were randomly arrayed and exhibited relatively large diffuse reflectivities and relatively small specular reflectivities. Total reflectance measurements showed that all nanowire arrays reduced the broadband reflectance of silicon. Smaller nanowire arrays outperformed the larger crystal growths. A five-fold decrease in the broadband reflectance of silicon was obtained from both vertical and randomly oriented nanowire arrays. The reflectances were constant for angles of incident below 35°. Measurements at angles of incidence greater than 35° are required to determine whether ZnO nanowires can perform as directional anti-reflective coatings and whether the morphology of the nanowires affects the directional reflectances.
|
586 |
Drude-Lorentz Analysis of the Optical Properties of the Quasi-Two-Dimensional Dichalcogenides 2H-NbSe<sub>2</sub> and 2H-TaSe<sub>2</sub>Marasinghe Mudiyanselage, Dinesh Marasinghe 01 October 2018 (has links)
No description available.
|
587 |
Synthesis and Optical Properties of Colloidal PbS NanosheetsPremathilaka, Shashini M. 06 August 2019 (has links)
No description available.
|
588 |
Lifetime and Degradation Studies of Poly (Methyl Methacrylate) (PMMA) via Data-driven MethodsLi, Donghui 01 June 2020 (has links)
No description available.
|
589 |
Application of Techniques in Spectroscopic Ellipsometry for Analysis of the Component Layers in CdTe Solar CellsAlaani, Mohammed A. Razooqi 11 July 2022 (has links)
No description available.
|
590 |
A study of optical properties of various materials as a tool in the process for designing a luminaireGrahn, Kajsa January 2021 (has links)
Overlooking the important role materials, in relation to light, have in interior design and architecture is not so uncommon. However, materials are not only important for understanding light in architecture, but also in product design since all objects within a space contribute to its visual character and spatial appearance. This study investigates differences in optical properties of a selection of materials often found in Scandinavian domestic environments. It also explores and discusses the main question of how, in the process of designing a luminaire, product and lighting designers could make use of the visual quality differences between the selected materials, and when put in a spatial context how their properties can be used as a tool to create different lighting scenarios. In order to answer the main question, the study applied a practical approach including a small scale and full-scale laboratory, in which the investigation was based on testing and experimenting with light and material and where qualitative and quantitative aspects were observed, measured, and consolidated.
|
Page generated in 0.1007 seconds