Spelling suggestions: "subject:"0ptical properties."" "subject:"aoptical properties.""
601 |
Optical Properties of Two Brands of Composite Restorative Materials and Confirmation of Theoretical Predictions for LayeringMikhail, Sarah Shawky 20 October 2011 (has links)
No description available.
|
602 |
Accurate Calculations of Nonlinear Optical Properties Using Finite Field MethodsMohammed, Ahmed A. K. 11 1900 (has links)
Molecular nonlinear optical (NLO) properties are extensively studied using both theory and experiment because of their use in myriad applications. Experimental measurements of the most interesting molecules’ NLO properties are difficult, so experimental data for molecules with desirable NLO properties is scarce. Theoretical tools don’t suffer from the same limitations and can provide significant insights into the physico-chemical phenomena underlying the nonlinear responses, can help in interpreting response behaviour of molecules, and can guide design the materials with desirable response properties. Here, I present my work on developing methods for accurately calculating the NLO properties of molecules using the finite field (FF) approach.
The first chapter provides a background for the finite field and electronic structure methods used in this dissertation. Chapter two is a thorough investigation of the finite field method. The limitations of the method are highlighted and the optimal conditions for overcoming its drawbacks and obtaining meaningful and accurate results are described. Chapter three presents the first systematic study of the dependence of optimal field strengths on molecular descriptors. The first protocol for predicting the optimal field for the second hyperpolarizability is presented and successfully tested, and the dependence of the optimal field strength for the first hyperpolarizability on the molecular structure is investigated. Chapter four is an assessment of various DFT functionals in calculating the second hyperpolarizabilities of organic molecules and oligomers. This study shows the limitations of conventional DFT methods and the importance of electron correlation to response properties. In chapter five we present a new method of calculating NLO properties using a rational function model that is shown to be more robust and have lower computational cost than the traditional Taylor expansion. Finally, chapter six includes a summary of the thesis and an overview of future work. / Thesis / Doctor of Philosophy (PhD)
|
603 |
Determination of Tissue Optical Properties from Interstitial Fluence Rate Measurements: A Study of the Systematic Errors / Determination of Tissue Optical PropertiesSingh, Patricia 12 1900 (has links)
Increased efficacy of light and laser applications in medicine is achieved by accurate light dosimetry. A minimally invasive technique for the determination of the optical coefficients of tissue involves interstitial measurements of the local fluence rate at two or more points in the tissue using isotropic, fibre optic detectors and application of a diffusion model of light propagation. The diffusion models assume simple, homogeneous tissue geometries, possibly oversimplifying the effect of tissue heterogeneities and boundaries. The primary goals of this study were to investigate the influence of realistic finite geometries on the fluence rate distribution and to quantify the systematic errors in the derived optical properties.
A Monte Carlo model was developed to predict the fluence rate distribution in any plane of interest in a medium and was verified by comparison with diffusion theory solutions for simple geometries. Fluence rate measurements were made in optically infinite and semi-infinite phantoms for a wide range of optical properties and it was determined that the optical coefficients were derived accurately for phantoms with ueff> 0.2 mm-1 and 2 < ut'<10 mm-1. Measurements were also made in finite spherical volumes with absorbing (Rd = 0.35) and diffuse reflecting (Rd =0.85) boundaries for three optical phantoms and comparisons of the experimental fluence rates with the predictions of the finite volume Monte Carlo model are presented. Boundary effects were observed to be significant within 4 transport mean free paths (mfp') of the boundary. The optical coefficients were derived by applying a diffusion solution for an infinite medium and it was determined that within 2 mfp' of the boundary, the derived ua was overestimated by 40% and underestimated by 20% for the absorbing and reflecting boundaries, respectively. / Thesis / Master of Science (MS)
|
604 |
Electron Spectromicroscopy of Multipole Moments in Plasmonic Nanostructures / Spectromicroscopy of Plasmonic MultipolesBicket, Isobel Claire January 2020 (has links)
The geometry of a plasmonic nanostructure determines the charge-current distributions of its localized surface plasmon resonances (LSPR), thereby determining the device’s interactions with external electromagnetic fields. To target specific applications, we manipulate the nanostructure geometry to create different electromagnetic multipole moments, from basic electric and magnetic dipoles to more exotic higher order and toroidal multipoles. The nanoscale nature of the resonance phenomena makes electron beam spectromicroscopy techniques uniquely suited to probe LSPRs over a wide spectral range, with nanoscale spatial resolution. We use electron energy loss spectroscopy (EELS) in a monochromated scanning transmission electron microscope and cathodoluminescence spectroscopy (CL) in a scanning electron microscope to probe the near-field and far-field properties of LSPR. Electric dipoles within triangular prisms and apertures in Sierpiński fractals couple as the generation number is advanced, creating predictable spectral bands from hybridized dipole modes of parent generations with hierarchical patterns of high field intensity, as visualized in EELS. A magnetic dipole moment is engineered using a vertical split ring resonator (VSRR), pushing the limits of nanofabrication techniques. On this nanostructure we demonstrate the calculation of spatially resolved Stokes parameters on the emission of the magnetic dipole mode and a series of coupled rim modes. Coupling of the magnetic dipole mode of four VSRRs in a circular array creates an LSPR mode supporting the lesser-known toroidal dipole moment. We further probe the near-field configuration of this 3D array through tilting under the electron beam in EELS, and the far-field emission through CL of higher order rim modes. We also propose further configurations of five and six VSRRs to strengthen the toroidal dipole moment. All of the data presented herein was analyzed using custom Python code, which provides a unique graphical interface to 3D spectromicroscopy datasets, and a parallelized implementation of the Richardson-Lucy deconvolution algorithm. / Thesis / Doctor of Philosophy (PhD) / Certain types of metallic particles are capable of trapping light on a scale far below that which we can see; their light-trapping properties depend on their material and on their geometry. Using these tiny particles, we can manipulate the behaviour of light with greater freedom than is otherwise possible. In this thesis, we study how we can engineer the geometry of these particles to give predictable responses that can then be targeted towards specific applications. We study a fractal structure with predictable self-similar responses useful for high sensitivity detection of disease or hormone biomarkers; a resonating structure emulating a magnetic response which can be used in the design of unique new materials capable of bending light backwards and cloaking objects from sight; and a combination of these resonators in an array to demonstrate exotic electromagnetic behaviour still on the limit of our understanding.
|
605 |
Reflectance spectroscopy as a remote sensing technique for the identification of porphyry copper deposits.Andersen, Kristine Louise January 1978 (has links)
Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Science. / Microfiche copy available in Archives and Science. / Bibliography: leaves 111-114. / Ph.D.
|
606 |
Photothermal and Photochemical Tumor Response to Carbon Nanotube Mediated Laser Cancer TherapySarkar, Saugata Sarkar 05 October 2010 (has links)
The objective of this study was to determine the photothermal and photochemical tissue response to carbon nanotube inclusion in laser therapy using experimental and computational methods. In this study, we specifically considered varying types and concentrations (0.01-1 mg/ml) of carbon nanotubes (CNTs), e.g., multi-walled carbon nanotubes (MWNTs), single-walled carbon nanotubes (SWNTs), and single-walled carbon nanohorns (SWNHs). In order to determine the photothermal effect of CNT inclusion, the thermal conductivity and optical properties of tissue representative phantoms with CNT inclusion were measured. Thermal conductivity of tissue phantoms containing CNTs was measured using the hot wire probe method. For identical CNT concentrations, phantoms containing MWNTs had the highest thermal conductivity. Optical properties (absorption and reduced scattering coefficients) of solutions and tissue phantoms containing carbon nanotubes were measured with spectrophotometry and determined by the inverse adding doubling (IAD) method. Inclusion of CNTs in phantoms increased light absorption with minimal effect on scattering and anisotropy. Light absorption of MWNTs was found to be higher than SWNTs and SWNHs.
The photochemical response to laser irradiation (wavelength 1064 nm) of CNTs was measured with spin-trap electron paramagnetic resonance (EPR) spectroscopy. Only SWNHs appeared to produce significant levels of ROS production in response to laser excitation in the presence of NADH. We detected the predominant presence of trapped hydroxyl radical (•OH) with a trace of the trapped super oxide (O2•-) radical. These free radicals are highly reactive and could be utilized to cause targeted toxicity to cancer cells.
The distribution of CNTs at the cellular level, in phantoms, and in kidney tumors was measured using transmission electron microscopy (TEM) imaging. Samples were imaged following various time periods (2-48h) of incubation and CNTs were observed inside the cell cytoplasm, nucleus, vacuole, and outside cells for the above mentioned time periods. CNTs in phantoms and tumor tissue were randomly and uniformly distributed in the entire volume. Computational model geometries were developed based on CNTs distribution in cells, tissue phantoms, and kidney tumor tissue.
In the computational part of this research the temperature response to laser irradiation alone or with CNT inclusion was determined using Penne's bioheat equation which was solved by finite element methods. Experimentally measured thermal conductivity and absorption and reduced scattering coefficients were used as input parameters in Penne's bioheat equation. The accuracy of the model predicted temperature distribution was determined by comparing it to experimentally measured temperature in tissue phantoms and kidney tumors following CNT inclusion and laser therapy. The model determined temperature distribution was in close correspondence with the experimentally measured temperature. Our computational model can predict the effectiveness of laser cancer therapy by predicting the transient temperature distribution. / Ph. D.
|
607 |
On the feasibility and application of optical p to n inversionCole, Eric D. 15 November 2013 (has links)
The feasibility of achieving carrier inversion of a properly doped crystal via optical excitation is studied. This process involves a host substrate doped with deep donors for n-type light characteristic and compensated by a shallow acceptor for p-type characteristic in the dark. This substrate is analyzed using well-known semiconductor equations. In addition conditions which must exist for carrier inversion are also specified. The solutions found are applied to a realistic set of dopants for illustrative purposes as well as indication of feasibility range. This inversion technique may possibly be used to generate bipolar junctions and thus devices. Other forms of photoconductivity are also qualitatively considered to supplement and extend the range of the inversion techniques applications. The processing of circuits using the developed concept offers possible interesting and useful advantages over existing techniques. The motivation for further research thus becomes obvious and is indeed the purpose of the thesis. / Master of Science
|
608 |
Pegmatitic muscovites: effect of composition on optical and lattice parametersDavis, Laura E. January 1985 (has links)
Twenty-five muscovites have been systematically studied chemically, optically, and structurally. Multiple linear regressions were performed on these data to determine the correlations of the compositional components with both the optical properties and the unit cell parameters. The results of this study indicate refractive indices increase to the extent Fe and Ti constitute the octahedral cations, and to the extent OH rather than F coordinates to these cations. The optic angle 2VX decreases nearly linearly with the Ti content. The b cell edge follows a near-linear trend with ∑(Mg + Fe(total)), similar to that found by Guidotti (1984). / Master of Science / incomplete_metadata
|
609 |
Measurement of tissue optical properties during mechanical compression using swept source optical coherence tomographyLiu, Yajing 04 June 2009 (has links)
Laser-based photo-thermal therapies can provide minimally-invasive treatment of cancers. Their effectiveness is limited by light penetration depth in tissue due to its highly scattering properties. The highly disordered refractive index distribution in tissue leads to multiple-scattering of incident light. It has been hypothesized that mechanical compression has a great potential to enhance the capabilities of laser therapy by inducing localized water transport, decreasing the refractive index mismatch, and decreasing the scattering coefficient of tissue. To better understand this process, we investigated the refractive index change of ex-vivo dog skin during mechanical compression using a swept-source optical coherence tomography (OCT) device built in our lab. The Lorentz-Lorenz rule of mixtures was applied to evaluate the water and protein weight fraction of tissue simultaneously. Results show that the refractive index of skin increased from 1.38 to 1.52 during compression and water content decreased about 60%-70% when the skin sample was compressed by 70%.
In addition, we conducted compression experiments on human finger, palm, back of hand, and front of forearm in vivo. OCT images of these skin sites before and after compression by 1 minute were compared. Optical thickness of epidermis and light penetration depth in the dermis were measured. The extended Huygens-Fresnel model was applied to measure the scattering coefficient μs of skin specimens. μs of skin was measured to be about 10-17 mm-1 before compression and decreased 60%-80% after compression, which increases the averaged light intensity by 2-7 dB and almost doubles light penetration depth in dermis. It is quite significant in laser therapies especially for treating epithelia cancers which originate at 1-2 mm beneath the tissue surface.
In the OCT imaging of skin dehydration experiment, we conclude that dehydration is an important mechanism of mechanical clearing. / Master of Science
|
610 |
Monte Carlo Simulations to Inform Clinical Applications of Optical DevicesArefin, Mohammed Shahriar, 0000-0002-2248-7687 05 1900 (has links)
Optical Point-of-Care (POC) devices provide a low-cost platform for real-time, non-invasive diagnosis of disease and quantitative estimation of physiological biomarkers, allowing use in a wide variety of institutional settings ranging from acute surgical care to long-term clinical monitoring. POC optical value has resulted in their widespread adoption with great interest in at-home monitoring and explosive growth within wearable consumer electronics. However, recent studies have highlighted the fact that well-established devices such as pulse oximeters can exhibit subtle but dangerous inaccuracies in measurements from some darker skin pigmentation patients whose basis is not completely understood. Emerging optical technologies, such as near-infrared spectroscopy (NIRS) monitoring of bone quality are promising, yet similarly suffer from an incomplete understanding of the relationship between probe design and performance.The focus of this dissertation is to develop next-generation approaches to improve the performance of optical diagnostic devices informed by computational simulations of light-tissue interactions using Monte Carlo (MC) modeling. Although MC simulations have been previously used to design and simulate devices such as Pulse Oximeters or Transcutaneous Bilirubinometers (TcB), the simulations were incapable of capturing population-level heterogeneity and thus evaluating underlying factors contributing to measurement bias. Here, an in-silico MC platform was developed to investigate how population-level heterogeneity impacts Pulse Oximeters and TcB devices. The results demonstrate that fundamental biases in optical measurements exist and are exacerbated by inequitable regulatory guidelines. These findings were used to further demonstrate the impact of changes in regulatory guidelines that can affect measurement accuracy and clinical decision-making. Additionally, simulation results were used to inform the development of spectroscopic oximetry and demonstrate the techniques clinical feasibility and potential to improve accuracy in a human-subjects pilot study. In the case of the NIRS bone quality assessment, a lack of fundamental knowledge of tissue optical properties to allow simulations to inform relative contributions from different tissue features to the overall signal or explore optimization of device design. Studies were performed to collect previously unreported optical properties from musculoskeletal tissues, and this data was used to perform MC simulations which informed bone contribution to NIRS signals and in turn resulted in the design and preliminary characterization of next-generation fiber optic probes for real-time non-ionizing assessment of bone quality. Collectively, this dissertation demonstrates the impact of advances in MC simulations of light-tissue interaction across pressing clinically focused engineering challenges. / Bioengineering
|
Page generated in 0.1031 seconds