• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 9
  • 4
  • Tagged with
  • 28
  • 14
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Origine de l'effet magnétoélectrique dans les manganites de structure hexagonale

Vermette, Jonathan January 2015 (has links)
L'intérêt pour les multiferroïques réside dans la possibilité d'asservir les propriétés électriques du matériau à partir du magnétisme et vice et versa. Le champ d'application pour ce type de composé est vaste, mais les attentes sont particulièrement grandes pour le domaine de l'emmagasinage d'information, celui de la spintronique et pour l'innovation de nouveaux senseurs magnétiques. Les propriétés magnétoélectriques se manifestant à partir de différents phénomènes physiques sont encore aujourd'hui mal comprises et cela est particulièrement le cas pour le couplage existant entre les ordres magnétiques et la ferroélectricité des manganites de structure hexagonale. Cette thèse présente donc une étude optique de cette famille de manganite ayant pour but de lever le voile sur le mécanisme responsable de ses propriétés magnétoélectriques. Cette thèse présente une étude détaillée du comportement de l'énergie en température des modes de vibration Raman de plusieurs manganites hexagonales à base des terres rares : Y[indice supérieur 3+], Ho[indice supérieur 3+], Er[indice supérieur 3+] et Lu[indice supérieur 3+]. Leurs similarités ainsi que leurs différences en terme de phases magnétiques, de températures de transition et de déplacements atomiques permettront de mettre en évidence les interactions d'échange magnétique des ions de manganèse et de terre rare impliqués dans les phénomènes magnétoélectriques de ces composés. Il sera aussi démontré que ces interactions sont modulables par l'application d'un champ magnétique pour donner lieu à des transferts partiels de charges, calculés à partir des changements énergétiques des modes infrarouges, permettant la réplique exacte du comportement magnétoélectrique de la polarisation du HoMnO[indice inférieur 3]. Des mesures de transmission optique et de luminescence des niveaux électroniques 4[florin] du HoMnO[indice inférieur 3] seront aussi présentées. Il sera vu que des changements importants de plusieurs transitions électroniques en fonction de la température et du champ magnétique appliqué se produisent et se corrèlent aux transitions de phases magnétoélectriques du cristal. La modulation des intensités de certaines transitions électroniques, voire même leur apparition et leur disparition, indiquent que des changements importants dans l'hybridation des électrons 4[florin] du Ho[indice supérieur 3+] produisent avec les niveaux 3d du Mn[indice supérieur 3+], de parité opposée, affectant les règles de sélection optiques. Ceci confirme du même coup un rôle majeur de ces derniers dans les phénomènes magnétoélectriques. Cette idée sera renforcée avec l'observation de transitions vibroniques indiquant une forte interaction des électrons 4[florin] du Ho[indice supérieur 3+] avec les modes de vibration du cristal qui ne peuvent se produire que via des effets d'hybridation étant donné leur confinement spatial et électronique.
2

Nano-Système Magnéto-Électro-Mécanique (NMEMS) ultra-basse consommation pour le traitement et le stockage de l'information / Ultra-low power Nano-Magneto-Electro-Mechanical-System (NMEMS) for data processing and data storage

Dusch, Yannick 29 November 2011 (has links)
Avec le développement des nouvelles technologies de l'information et de la communication (NTIC), la consommation énergétique des systèmes de traitement et de stockage de données est devenue un problème majeur. Les limites des systèmes actuels à cet égard impliquent le besoin de technologies de rupture ultra-basse consommation.Cette thèse propose une approche originale de cette problématique, basée sur l'utilisation d'un élément magnétoélectrique composite (piézoélectrique/magnétostrictif) bistable et commandable de façon univoque, baptisé MELRAM.L'étude énergétique statique montre que la combinaison d'une anisotropie uni-axiale et d'un champ de polarisation magnétique statique définit deux positions d'équilibre stables perpendiculaires pour l'aimantation dans la partie magnétostrictive. L'application de contraintes piézoélectriques sur celle-ci permet de contrôler électriquement la position de l'aimantation. L'étude énergétique du système permet également de montrer la stabilité du système à long terme (10 ans), dans une large gamme de températures autour de l'ambiante, avec une barrière énergétique de 60kBT. L'étude dynamique, utilisant le modèle du macrospin, permet quant à elle d'exhiber un temps de réponse inférieur à 1ns. L'énergie dissipée lors de l'écriture, d'origine électrique et magnétique, est évaluée à 261kBT (1,1aJ), soit quatre ordres de grandeur en dessous de l'état de l'art.Plusieurs stratégies de lecture par vanne de spin et jonction tunnel magnétique sont proposées et commentées. Les premières réalisations d'éléments nanométriques magnétostrictifs sont présentées ainsi qu'une solution de polarisation magnétique intégrée par aimant permanent / As new information and communication technologies boom, the energy consumption of data processing and storage systems has become a major issue. The limits of state of the art systems regarding this gives rise to the need for ground-breaking ultra-low power technologies.This PhD thesis suggests an original approach of this issue, based on a bistable composite magnetoelectric element (piezoelectric/magnetostrictive) which can be controlled unequivocally, named MELRAM.The static energetic study shows that the combination of an uniaxial anisotropy and a static magnetic bias field defines two stable and perpendicular equilibrium positions for magnetization in the magnetostrictive part. The application of piezoelectric stress allows the electric control of the magnetization position.The energetic study also shows the long term (10 years) stability of the system, in a large temperature range around room temperature, with an energy barrier of 60kBT. The dynamic study, using the macrospin model, gives a response time less than 1ns. The dissipated energy during writing, of electric and magnetic origin, is estimated at 261kBT (1.1aJ), that is to say four orders of magnitude below the state of the art.Several reading strategies using spin valves and magnetic tunnel junction are proposed and commented. First realization of nanometer-sized magnetostrictive elements are presented as well as an integrated polarization solution, using permanent magnets
3

Nano-Système Magnéto-Électro-Mécanique (NMEMS) ultra-basse consommation pour le traitement et le stockage de l'information

Dusch, Yannick 29 November 2011 (has links) (PDF)
Avec le développement des nouvelles technologies de l'information et de la communication (NTIC), la consommation énergétique des systèmes de traitement et de stockage de données est devenue un problème majeur. Les limites des systèmes actuels à cet égard impliquent le besoin de technologies de rupture ultra-basse consommation.Cette thèse propose une approche originale de cette problématique, basée sur l'utilisation d'un élément magnétoélectrique composite (piézoélectrique/magnétostrictif) bistable et commandable de façon univoque, baptisé MELRAM.L'étude énergétique statique montre que la combinaison d'une anisotropie uni-axiale et d'un champ de polarisation magnétique statique définit deux positions d'équilibre stables perpendiculaires pour l'aimantation dans la partie magnétostrictive. L'application de contraintes piézoélectriques sur celle-ci permet de contrôler électriquement la position de l'aimantation. L'étude énergétique du système permet également de montrer la stabilité du système à long terme (10 ans), dans une large gamme de températures autour de l'ambiante, avec une barrière énergétique de 60kBT. L'étude dynamique, utilisant le modèle du macrospin, permet quant à elle d'exhiber un temps de réponse inférieur à 1ns. L'énergie dissipée lors de l'écriture, d'origine électrique et magnétique, est évaluée à 261kBT (1,1aJ), soit quatre ordres de grandeur en dessous de l'état de l'art.Plusieurs stratégies de lecture par vanne de spin et jonction tunnel magnétique sont proposées et commentées. Les premières réalisations d'éléments nanométriques magnétostrictifs sont présentées ainsi qu'une solution de polarisation magnétique intégrée par aimant permanent.
4

Influence de la stœchiométrie sur les propriétés physiques du multiferroïque BiFeO3

Jarrier, Romain 06 February 2012 (has links) (PDF)
Le matériau BiFeO3 (BFO) est le sujet de très nombreuses études fondamentales dans le domaine des matériaux multiferroïques. Cet intérêt est du au fait que cet oxyde présente deux ordres à longue distance à la température ambiante : ferroélectricité et antiferromagnétisme de type G (ce dernier est aussi non colinéaire avec la présence de faible ferromagnétisme ainsi qu'une modulation de spin de type cycloïdale possédant une longueur d'onde de 620 angstrœm). Il est alors possible d'étudier les comportements de couplage entre les propriétés électrique et magnétique. Ce travail concerne principalement la synthèse, les structures haute température, et les propriétés physiques (électronique et magnétique principalement) du matériau BiFeO3 ayant subi des recuits de différentes pressions partielles d'oxygène. La première étape de ce travail concerne l'étude de la synthèse afin de déterminer le protocole optimal de réalisation des céramiques. Les recuits sous atmosphère ont eu pour but de modifier la stœchiométrie en oxygène du matériau, afin d'affecter ses propriétés physiques. Des modifications de faible amplitude de certaines propriétés ont été détectées, mais à l'inverse, la température de Néel et la température de Curie ne sont pas affectées.Concernant la nature des structures haute température, les phases beta et gamma, sujettes à de nombreuses controverses dans la littérature, ont été étudiées par diffraction des rayons X et analyse DSC sur BFO pur ou avec excès de bismuth. Cet excès a permis de stabiliser la phase gamma entre 940 et 950°C, en évitant sa décomposition. Pour compléter ce travail sur BFO en phase pure, nous avons dopé des céramiques avec 10 % de Zr4+ pour étudier le comportement structurale à haute température, ainsi que les propriétés magnétiques et électriques de cette nouvelle composition. Enfin, des simulations numériques sur le composé stœchiométrique, lacunaire en bismuth ou en oxygène ont été réalisées pour comprendre les évolutions structurale, électronique et magnétique du matériau suite aux recuits. La dernière partie est une étude sur le comportement basse température de BFO pur sous différentes formes : nanotubes, céramiques et monocristaux. Nous avons analysé le comportement électrique (impédance, pyroélectricité, RPE et électrostriction), magnétique (aimantation en fonction de la température et du champ magnétique) et structurale (rayon X en thêta-2thêta et rasant, DSC, microRaman et résonance d'ultrasons). Suite à ces études, trois températures sont observées comme présentant un comportement particulier : 140 et 200 K, qui semblent liées par de nombreuses techniques d'analyses et ressortent comme étant une transition à la surface de BFO, mais aussi 180 K où nous avons un écart à la linéarité de la dilatation thermique et un effet d'électrostriction.
5

Synthèse et étude de composés Ga₂₋ₓFeₓO₃

Ciomaga Hatnean, Monica 17 December 2012 (has links) (PDF)
Une sous-classe intéressante de matériaux multiferroïques est celle des composés multiferroïques magnétoélectriques, dans lesquels il existe un couplage entre les paramètres d'ordres ferroïques (magnétique et électrique). De ce point de vue, la classe des matériaux Ga₂₋ₓFeₓO₃ a attiré l'attention des chercheurs. Ces composés sont actuellement connus pour leur température de transition élevée ainsi que pour l'interaction possible entre leurs propriétés ferrimagnétiques et piézoélectriques. Leur structure cristallographique et magnétique est assez complexe, du fait du désordre de substitution interne Fe/Ga. Les oxydes M₂Ga₂Fe₂O₉ (M=In, Sc) appartiennent à cette même famille de matériaux et ont été synthétisés pour la première fois afin d'obtenir une structure cristallographique ordonnée de GaFeO₃. Afin d'étudier les propriétés physiques de ces différents composés, nous avons synthétisé par la méthode de la zone flottante (au four à image), en utilisant différentes conditions de croissance, des monocristaux de composition Ga₂₋ₓFeₓO₃ (x=0.90, 1.00 et 1.10). Nous avons également élaboré des échantillons polycristallins de composés GaFeO₃ faiblement dopés en indium ainsi que le composé M₂Ga₂Fe₂O₉ (M=In, Sc). Nous avons enfin préparé de monocristaux de composition In₂Ga₂Fe₂O₉ par la méthode de croissance en flux. L'affinement Rietveld des diffractogrammes des rayons X et des neutrons nous a permis de montrer que les céramiques de GaFeO₃ faiblement dopées en indium et les monocristaux de Ga₂₋ₓFeₓO₃ cristallisent dans le groupe d'espace Pc2₁n. Les paramètres cristallins et la température de Néel caractéristiques pour les monocristaux de Ga₂₋ₓFeₓO₃ varient de manière linéaire avec la teneur en fer. Les affinements nous ont permis de conclure que la structure de ces composés est caractérisée par un désordre élevée (25% de la quantité du fer se trouve sur les sites natifs du gallium). L'incorporation graduelle de l'indium s'accompagne d'une augmentation du volume de la maille ainsi qu'à une diminution de la température de transition magnétique. Le spectre d'excitations magnétiques mesuré pour les cristaux de Ga₂₋ₓFeₓO₃ nous a permis de mettre en évidence une coexistence de l'ordre ferrimagnétique à longue portée et d'un signal de diffusion diffuse en-dessous de la température de Néel. Ce signal diffus suggère l'existence d'une composante de type verre de spin du fait du désordre interne des sites. L'étude de la variation thermique de la constante diélectrique sur un cristal de GaFeO₃ révèle l'absence d'un couplage magnétoélectrique au sein de ces matériaux. L'affinement Rietveld des diagrammes de diffraction des rayons X et des neutrons mesurés sur les poudres de M₂Ga₂Fe₂O₉ (M=In, Sc) révèle une structure orthorhombique de type Pba2 fortement désordonnée, avec quatre sites cationiques d'occupation mixte. Les données de susceptibilité DC et AC couplées avec les mesures de chaleur spécifique et les spectres Mössbauer indiquent, en-dessous d'une température de Tg ≈ 19 K, l'existence d'un état fondamental de type verre de spin dans ce système. Les mesures du spectre d'excitations magnétiques ont mis en évidence l'absence d'ordre magnétique à longue portée et confirment l'existence d'une transition d'un état paramagnétique vers un état verre de spins. L'existence d'un comportement de type verre de spin dans les systèmes Ga₂₋ₓFeₓO₃ et M₂Ga₂Fe₂O₉ (M=In, Sc) souligne l'importance du désordre interne pour la caractérisation de l'état fondamental magnétique.
6

Matériaux magnétostrictifs de nouvelle génération pour l’énergie / Magnetostrictive materials for energy

Issindou, Valentin 11 December 2017 (has links)
Ces dernières années, les performances des matériaux multiferroïques ont beaucoup progressé avec les composites à deux phases : magnetostrictive et piézoélectrique. Les composites utilisent le couplage entre le magnétisme et la piézoélectricité par le biais de la magnétostriction. On obtient ainsi le contrôle de l’aimantation par le champ électrique électrique et à l’inverse celui de la polarisation électrique par un champ magnétique (ce qui nous intéresse ici). Cela pousse l’électronique vers des solutions plus vertueuses pour l’environnement avec une baisse de la consommation électrique des circuits (les commandes en courant sont remplacées par des commandes en tension) et le remplacement des piles d’alimentation, qui doivent être changées périodiquement, par des systèmes de récupération d’énergie pérenne. La récupération d’énergie est très présente avec l’Internet des Objets (IoT). Malgré leur performance, ces composites restent perfectibles, notamment au niveau de la phase magnetostrictive. Son optimisation est indispensable. Le matériau courant est le Terfenol-D à cause de sa magnétostriction géante, dans sa forme massive et monocristalline. Ce matériau historique demeure rare, cher, fragile et son procédé de tirage n’est pas adapté à la fabrication de dispositifs miniatures. Ce travail a donc porté sur l’étude comparative des voies de fabrication de disques miniatures de Terfenol-D pour la réalisation de récupérateurs d’énergie. Une étude de fond a été menée sur des séries de disques découpés dans des lingots d’alliages commerciaux (monocristallins et polycristallins). Ensuite, nous sommes tournés vers la méthode du frittage isotrope de poudre avec très peu de recul sur ce matériau. Le frittage conventionnel a conduit aux premiers disques fonctionnels sans découpe mais manquant de densité et de tenue mécanique. Ces défauts ont ensuite été corrigés grâce à la technique de SPS (Spark Plasma Sintering) mais la reproductibilité dans le temps reste à améliorer. Les disques de Terfenol-D (découpés et fabriqués) ont été assemblés avec la phase piézoélectrique (PZT commercial). Des caractérisations électriques par la méthode sans contact ont validé leur aptitude à récupérer de l’énergie, en proportion moindre quand on le compare au Terfenol-D monocristallin comme attendu, mais en quantité suffisante pour les applications ciblées. Enfin, une solution alternative a été explorée avec l’alliage magnétique à mémoire de forme NiMnGa offrant de très grandes déformations. Une perspective vers un bouton poussoir autonome sans fil est présentée en toute fin. / In recent years, performances of multiferroïc materials have considerably improved with two-phase composites: magnetostrictive and piezoelectric. These composites take advantage of the coupling between magnetism and piezoelectricity through magnetostriction. Thus they allow control of magnetization with electrical voltage, and conversely, to get an electrical polarization depending on the magnetic field (our focus in this case). This drives electronics towards more environmental friendly solutions, namely with lower circuit power consumption (current controls are replaced by voltage controls) and the replacement of batteries, which must be periodically changed, by sustainable energy harvesting systems. Energy harvesting solutions are popular with the Internet of Things (IoT). Despite their performance, these multiferroïc composites remain perfectible, especially regarding the magnetostrictive phase. Its optimization is essential. The common material is Terfenol-D because of its giant magnetostriction, used in its massive and monocrystalline form. This material remains rare, expensive, fragile and its growing method is not adapted to the manufacturing of miniature devices. This work focuses on a comparative study of Terfenol-D miniature disk manufacturing pathways for the production of energy harvesters. A benchmark study was carried out on a series of disks cut in commercial alloy ingots (monocrystalline and polycrystalline). Next, the isotropic powder sintering method was investigated with very little background on this material. Conventional sintering led to the first functional disks needing no ulterior machining but with low density and mechanical strength. These defects were then corrected using the SPS technique (Spark Plasma Sintering) but the reproducibility over time has yet to be improved. The Terfenol-D disks (both cut and manufactured) were assembled with the piezoelectric phase (commercial PZT). Electrical characterizations using a contactless method have validated their potential to harvest energy, in lesser amounts than monocrystalline Terfenol-D as expected, but in a large enough quantity regarding most of applications. Finally, an alternative solution has been explored with NiMnGa shape magnetic alloys offering very large deformations. A perspective to a wireless autonomous push button prototype is presented at the very end.
7

Investigation of new multiferroic materials with coexistence of several ferroic and structural instabilities / Etude de nouveaux matériaux multiferroiques avec coexistence multiple d’instabilités ferroiques et structurales

Liu, Hongbo 04 November 2011 (has links)
L’étude des matériaux multiferroiques est sans doute un des domaines de recherche actuelle les plus actifs et prolifiques de la matière condensée. Dans ces matériaux, coexistent polarisation, aimantation et élasticité. On comprend bien que cette coexistence permet une multifonctionnalité très attrayante pour un grand nombre d’applications mais aussi fournit un vivier extraordinaire pour étudier les interactions entre ces grandeurs ainsi que les mécanismes microscopiques sous-jacents. Cet attrait s’en trouve d’autant plus renforcé du fait des phénomènes de couplage entre ces grandeurs physiques autorisant des fonctionnalités nouvelles comme par exemple le renversement d’une aimantation avec un champ électrique au lieu d’un champ magnétique classiquement. Cependant, ces matériaux multiferroiques sont d’une part en petit nombre et d’autre part, exploitent pour beaucoup d’entre eux, la polarisation d’un ferroélectrique et l’aimantation d’un antiferromagnétique. Ceci étant, il existe d’autres types d’arrangements polaires et magnétiques encore non-exploités, c’est dans ce cadre que s’inscrit ce travail de thèse. L’objectif de la thèse était de synthétiser de nouveaux multiferroiques présentant des arrangements polaires et magnétiques originaux et d’en caractériser les propriétés. Nous nous sommes tout particulièrement intéressés aux oxydes PbFe2/3W1/3O3 (PFW) et PbZrO3 (PZO). PFW présente des ordres polaires et magnétiques à longue et à courte portée : ferroélectrique-relaxeur et antiferromagnétique-verre de spin (ou ferromagnétisme faible). PZO est quant à lui antiferroélectrique avec antiferrodistorsivité (rotation des octaèdres d’oxygène) et présence d’instabilité ferroélectrique. Nous avons d’une part combiné ces deux matériaux pour former une solution solide et d’autre part réalisé un dopage de PZO avec des ions magnétiques. Après avoir synthétisé ces matériaux, nous les avons caractérisés électriquement (constante diélectrique, phénomène de relaxation, polarisation, température de Curie), magnétiquement (susceptibilité magnétique, aimantation) et structuralement (transition de phase). Ainsi, nous avons montré qu’il était possible d’obtenir un matériau multiferroique (50%PFW-50%PZO) présentant l’ensemble des instabilités ferroiques et structurales. Ces nouveaux matériaux ouvrent ainsi de nouvelles perspectives d’étude dans ce riche domaine en particulier en utilisant des antiferroélectriques. / Multiferroics are currently intensely investigated because the coexistence and coupling of ferroic arrangements brings about new physical effects and, for the few room-temperature examples, interesting prospects for applications in various fields. This interest is illustrated by the recent publication of several articles on multiferroics in high impact reviews over the last five years. The main goal of the thesis was to look for new multiferroics by exploiting overlooked and original polar and magnetic arrangements. We more precisely investigated compounds based on lead iron tungsten PbFe2/3W1/3O3 (PFW) and lead zirconate PbZrO3 (PZO) oxides. PFW displays long- and short-range both polar and magnetic orders (ferroelectric-relaxor and antiferromagnetic-spin-glass) while PZO is antiferroelectric with antiferrodistorsivity (oxygen tilts) and existence of ferroelectric instabilities. Combining various techniques from synthesis to electric, magnetic and structural characterizations, we demonstrated that it is possible to get a multiferroic compound (50%PFW-50%PZO) with coexistence of multiple ferroic and structural arrangements with room temperature properties of practical interest. This work opens new prospects in this rich field of multiferroics in peculiar by using antiferroelectrics.
8

Etude des propriétés du couplage d'échange dans des nano-structures de type ferromagnétique/multiferroïque / Study of the exchange bias properties in ferromagnetic/multiferroic nanostructures

Richy, Jérôme 29 November 2016 (has links)
Ce travail de thèse est consacré à l’étude du couplage d’échange dans des nano-structures de type ferromagnétique-multiferroïque, avec un intérêt particulier dans la compréhension du renversement en température et angulaire de l’aimantation.Au niveau théorique, un modèle numérique de renversement en température de l’aimantation dans des nanoparticules de type cœur-coquille sera présenté. Le code source du programme, implémenté au cours de cette thèse, a été rendu disponible pour la communauté scientifique sous licence libre. Il permet notamment d’introduire une dispersion en taille des particules, et démontrera le rôle clé de la distribution en taille et de la température dans la réponse magnétique des nanoparticules.Au niveau expérimental, une bicouche composée d’un ferromagnétique Ni81Fe19, et d’un multiferroïque magnétoélectrique à température ambianteBiFeO3, est étudiée. Ces couches sont déposées par pulvérisation cathodique radiofréquence, selon différentes épaisseurs de BiFeO3. Leur structure ainsi que leur morphologie sont caractérisées par diffraction des rayons X, microscopie à force atomique et microscopie électronique à transmission, révélant en particulier la polycristallinité de BiFeO3. Le renversement de l’aimantation est analysé par magnétométrie vectorielle à échantillon vibrant, fournissant des mesures angulaires à température ambiante et à 77 K, à l’aide d’un cryostat à immersion développé au cours de cette thèse ; ainsi que par magnétométrie SQUID, avec l’application de deux protocoles spécifiques de refroidissement en température (entre 10 K et 380 K). Les résultats montrent un comportement similaire à ceux obtenus sur des bicouches épitaxiées. Une propriété intrinsèque du BiFeO3 sera proposée comme étant un mécanisme possible conduisant au comportement en température obtenu, à savoir le cantage des spins de BiFeO3 conduisant à une contribution biquadratique du couplage d’échange. Finalement, un phénomène nouveau dans les matériaux couplés par échange sera mis en évidence à température ambiante, c’est-à-dire un traînage angulaire des axes d’anisotropie. / This dissertation presents a study of the exchange coupling in ferromagnetic-multiferroic nanostructures, with specific interest in understanding the thermal and angular reversal of the magnetization.A theorical numerical model of the thermal magnetization reversal in core-shell nanoparticles is presented. The program source code, implemented during this thesis, is freely avaibale to the scientific community under an open-source license. This model, developed during this thesis, allows diameter size dispersion, and demonstrates the key role of the size distribution and temperature in the magnetic response of nanoparticles.The experimentally studied bilayer is composed of a ferromagnetic material, Ni81Fe19, and a room temperature magnetoelectric multiferroic, BiFeO3. Different thicknesses in BiFeO3 were deposited. The structure and morphology of the bilayers were studied using X-ray diffraction, atomic force microscopy and transmission electron microscopy, revealing in particular the BiFeO3 polycristallinity. The magnetization reversal was probed by vectorial vibrating magnetometry, at room temperature and 77 K, using a self-developped immersive cryostat. The SQUID magnetometry allowed the measurement of two specific cooling protocols between 10 K and 380 K. The results of these two different protocols are similar to the ones obtained for measurements previously reported on expitaxial BiFeO3. An intrinsic property of BiFeO3 is proposed as being the driving mechanism for the thermal dependent magnetization reversal: the canting of the BiFeO3 spins leading to a biquadratic contribution to the exchange coupling. Finally, a new phenomenon in exchange coupled materials is shown at room temperature, which corresponds to an angular training of the anisotropy axes.
9

Influence of the Pressure on the Multiferroicity of RMn2O5 / Influence de la pression sur la multiferroïcité de RMn2O5

Peng, Wei 18 September 2018 (has links)
La série de RMn2O5 multiferroïques a été largement étudiée en raison de son fort couplagemagnéto-électrique. L’origine de la ferroélectricité a été clarifiée en tant que mécanisme de strictiond’échange. Comme les variations des distances interatomiques modifiées par la pression externe peuventgrandement affecter les propriétés multiferroïques, il est essentiel de comprendre l’origine microscopiquede cet effet.Nous avons déterminé la structure magnétique de la phase magnétique commensurable induite parla pression (PCM) et dessiné le diagramme de phase p − T. Sur la base d’un équilibre énergétique subtilentre l’interaction d’échange J1, l’interaction d’échange R-Mn J6 et l’anisotropie de la terre rare, nousavons proposé un mécanisme de stabilisation des différentes phases magnétiques en fonction de la pressionpour les différents composés avec R=Dy, Gd et Sm. L’augmentation de J1 sous pression à températureambiante obtenue grâce à l’étude par diffraction X confirme ce mécanisme. Une explication supplémentairea été proposée pour le cas particulier de PrMn2O5. Ces résultats ouvrent certainement la voie à unecompréhension complète de l’origine de l’influence de la pression dans la famille RMn2O5. / The series of multiferroic RMn2O5 has been extensively studied due to its strong magnetoelectriccoupling. The ferroelectricity origin has been clarified as the exchange striction mechanism. As thevariations of the interatomic distances modified by the external pressure can greatly affect the multiferroicproperties, it is essential to understand the microscopic origin of this effect.In this thesis, we have systematically studied the multiferroic properties of the RMn2O5 compounds byusing powder X-rays diffraction and powder neutron diffraction (PND) under pressure. We have determinedthe magnetic structure of the pressure induced commensurate magnetic (PCM) phase and drawn the p − Tphase diagram. Based on a subtle energy balance among the exchange interaction J1, the R-Mn exchangeinteraction J6 and the anisotropy of the rare earth, we have proposed a mechanism for stabilizing thedifferent magnetic phases as a function of the pressure for the different compounds with R = Dy, Gd andSm. The enhanced J1 under pressure at room temperature from the X-ray diffraction study further confirmsthis mechanism. An additional explanation has been proposed for the special case of the PrMn2O5. Theseresults certainly pave the way to fully understand the origin of the pressure influence in the RMn2O5 family
10

Effet de taille et du dopage sur la structure, les transitions et les propriétés optiques de particules du multiferroïque BiFeO₃ pour des applications photocatalytiques / Size and doping effect on the structure, transitions and optical properties of multiferroic BiFeO₃ particles for photocatalytic applications

Bai, Xiaofei 16 February 2016 (has links)
Ce travail de thèse expérimentale a été consacré à la synthèse par des méthodes de chimie par voie humide de nanoparticules à base du multiferroïque BiFeO3 et à leur caractérisation, avec comme objectif finale des applications photocatalytiques. Ce matériau présente une bande interdite, avec un gap de 2.6eV, qui permet la photo-génération de porteurs de charges dans le visible faisant ainsi de BiFeO3 un système intéressant pour des processus photo-induits. Ce travail s’est en particulier focalisé à caractériser les propriétés de nanoparticules à base de BiFeO3 en vue de comprendre l’effet de ses propriétés sur leur potentiel dans des applications liées à la photocatalyse. Tout d’abord, l’étude des effets de taille sur les propriétés structurales, de transitions de phase, et physico-chimiques des particules a été réalisée, en gardant comme principal objectif de découpler les propriétés liées à la surface de celles du massif/cœur de la particule. Pour cela, une maîtrise et une optimisation des procédés de synthèse de particules aux échelles nano- et micro-micrométriques de BiFeO3 a été nécessaire pour obtenir des composés de taille variable et de très bonne qualité cristalline. Malgré la diminution de la taille des particules, on constate que, grâce au contrôle de paramètres de synthèse, nos nanoparticules présentent des propriétés très proches à celles du massif de BiFeO3, gardant la structure rhomboédrique R3c avec des faibles effets de contrainte. Afin de contrôler indirectement par le dopage les propriétés optiques des composés à base de BiFeO3, on a réussi à réaliser un dopage très homogène en La3+, et un dopage partiel en Ca2+, sur le site de Bi3+. Les propriétés optiques des nanoparticules et leurs applications dans les premières expériences photocatalytiques sur la dégradation du colorant rhodamine B ont montré la complexité de la physico-chimie de leur surface et du processus d’interaction lumière-particule. Après analyse des données d’absorbance optique en fonction de la taille de nanoparticules, on observe que la bande interdite déduite pour ces différentes particules n’est pas le facteur prédominant sur les performances photocatalytiques. D’autres facteurs ont pu être identifiés comme étant à l’origine de la localisation de charges photo-générées, tels que des états de surface liés à une fine couche de peau ou skin layer sur les nanoparticules, présentant des défauts structuraux, une réduction de l’état d’oxydation du Fe3+ vers le Fe2+ et la stabilisation d’autres adsorbats, tels que FeOOH ; tous ces facteurs peuvent contribuer au changement dans les performances photocatalytiques. Les résultats photocatalytiques restent très encourageants pour poursuivre les études de nanoparticules à base de BiFeO3, montrant une dégradation de la rhodamine B à 50% au bout de 4h de réaction photocatalytique pour certaines des nanoparticules étudiées. / This experimental PhD work has been dedicated to the synthesis, by wet chemistry methods, and characterization of nanoparticles based on multiferroic BiFeO3, with the aim of using them for photocatalytic applications. This material presents a bandgap of 2.6eV, which allows the charge carrier photoexcitation in the visible range, making BiFeO3 a very interesting system for photoinduced processes. This thesis has been particularly focused on characterizing the properties of BiFeO3 nanoparticles in view of understanding the relationship of their properties on their potential use for photocatalytic applications. First of all, the topic of the size effect on the structural properties, phase transitions, and physics and chemistry of the particles has been developed, keeping as first aim to separate the properties related to the surface from those arising from the bulk/core of the particle. To do so, the mastering and optimization of the synthesis processes of BiFeO3 particles at the nano and microscale were needed, to finally obtain different size compounds with high crystalline quality. Despite the size reduction of the particles, we notice that, thanks to the control of the synthesis process, our BiFeO3 nanoparticles present properties very close to those of the bulk BiFeO3 material, keeping the rhombohedral structure R3c with weak strain effects. In order to indirectly tune the optical properties exploiting the doping, we have succeeded in realizing a homogenous La3+ doping, and a partial Ca2+ doping, on the Bi3+ site. The optical properties of the nanoparticles and their use on the first photocatalytic experiments for degrading rhodamine B dye have shown the complexity of the physics and chemistry phenomena at their surface and of the light-particle processes. After analyzing optical absorbance data as a function of the particle size, we observe that the deduced bandgap for different particles is not the main parameter directing the photocatalytic performances. Other factors have been identified to be at the origin of the localization of the photoexcited charges, as the surface states linked to the skin layer of the nanoparticles, depicting structural defects, a reduction of the oxidation state of Fe3+ towards Fe2+ and the stabilization of other adsorbates, such as FeOOH; all these parameters may contribute to the change on the photocatalytic performances. The photocatalytic results are very encouraging, motivating to continue the study of BiFeO3 based nanoparticles, though depicting a 50% rhodamine B degradation after 4h of photocatalytic reaction using some of the present nanoparticles.

Page generated in 0.0482 seconds